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Abstract 

The peripheral immune system plays a role in delayed neural injury after stroke. This 

response originates from the spleen as splenectomy prior to middle cerebral artery 

occlusion (MCAO) in rats significantly reduces infarct volume in the brain. This research 

is based on the hypothesis that inhibiting the splenic response will reduce 

neurodegeneration after stroke. Studies in animals have implicated lymphocytes as the 

immune cell type that is detrimental following MCAO. Interferon gamma (IFNγ) has been 

identified as a pro-inflammatory cytokine that is also detrimental following stroke. IFNγ is 

important because it activates microglia and macrophages in a pro-inflammatory nature 

that increases neural injury following stroke. Therefore IFNγ was examined in the brain 

and the spleen following MCAO. IFNγ protein was elevated at 24 h in the spleen and at 

72 h in the brain post MCAO. Microglia/macrophages become maximally activated at 72 

h in the brain after MCAO. Splenectomy decreases the levels of IFNγ in the brain 

following MCAO. Systemic administration of IFNγ reversed the protective effects of 

splenectomy.  

 

The cellular response to MCAO was examined next because of the difference in time 

between the spike in IFNγ in the spleen and the delayed increase in the brain. The 

cellular response from the spleen was studied by labeling splenocytes five days prior to 

MCAO with a fluorescein dye. Tissues were examined 48 and 96 h post MCAO or sham 

MCAO for fluorescence.  These cells were released from the spleen into circulation at 48 
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h post MCAO and migrated to the brain where the cells produced IFNγ at 96 h post 

MCAO.  

 

IFNγ appears to play a role in the splenic response to stroke. One protein that is up 

regulated by cells that have been activated by IFNγ, interferon-inducible protein 10 (IP-

10) is part of the inflammatory cycle driven by IFNγ. IP-10 recruits more IFNγ producing 

T helper (Th) cells to the site of injury. IP-10 has the unique ability to attract Th1 cells, the 

pro-inflammatory Th cells, and inhibit Th2 cells, the anti-inflammatory Th cells. This leads 

to more IFNγ production as IFNγ is the signature cytokine of a Th1 response. IP-10 is 

significantly increased in the brain at 72 h post MCAO, similar to IFNγ expression. In the 

spleen IP-10 increased at 24 h and remained elevated out to 96 h following MCAO. IFNγ 

signaling was inhibited by utilizing an IFNγ neutralizing antibody administered beginning 

24 h post MCAO. The IFNγ antibody treated group had decreased infarct volumes, IP-10 

levels in the brain, and appeared to have decreased T cells in the ipsilateral hemisphere 

at 96 h post MCAO.  

 

Following ischemic stroke splenocytes are released into circulation and migrate to the 

brain. They release IFNγ to activate microglia/macrophages in a proinflammatory 

phenotype causing an increase in IP-10 levels. IP-10 then potentiates the Th1 driven 

inflammation which inhibits the Th2 response. The elevated levels of IFNγ increase 

neural injury following MCAO. Blocking IFNγ selectively blocks the inflammatory facet of 

the immune response to reduce stroke induced neurodegeneration. This leaves the 

other immune responses intact and able to contribute to tissue repair, regeneration, and 

able to respond to infections. Selectively inhibiting IFNγ signaling is a promising stroke 

therapeutic. 
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Background and Significance 

Stroke:  

Stroke Pathology 

Strokes are caused by a disruption of blood flow to the brain, which results in brain 

damage to the areas supplied by the effected blood vessel. Loss of blood flow can result 

in two different types of stroke: ischemic stroke, caused by a clot, or hemorrhagic stroke, 

intracerebral hemorrhage (ICH), caused by the rupture of a blood vessel. Ischemic 

strokes account for 87 percent of all strokes and can be caused by two different 

mechanisms embolism or thrombosis. Cerebral embolisms occur when a blood clot 

forms at the point of occlusion in the vessel, whereas cerebral thrombosis occurs when a 

clot from another area of the body travels to the brain and becomes lodged in the 

occluded blood vessel. Occlusion of the larger vessels in the brain can have catastrophic 

effects because large areas of the brain are affected.  

 

Stroke is the fourth leading cause of death in the United States, 129,000 deaths in 2011, 

and leading cause of disability. Approximately 795,000 strokes occur each year, of which 

185,000 are recurrent strokes. There is a 40% increase in risk of stroke in the first five 

years following an initial stroke. Usually recurrent strokes are more disabling and have 

higher mortality. In 2010 there were seven million stroke survivors over age 20 in the 

United States. While stroke is down to the fourth leading cause of death from the third 

leading cause, it still remains the leading cause of disability. The reason stroke is the 
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leading cause of disability is because 50% of patients experienced some hemiparesis, 

30% were unable to walk without assistance, 26% were dependant on assistance with 

activities of daily living, 19% had aphasia, 35% had depressive symptoms, and 26% 

were in nursing homes. This leads to a high financial burden on society as stroke 

resulted in $73.7 billion in total direct and indirect costs in United States in 2010 (Roger 

et al. 2012).  

 

Risk Factors 

There are several risk factors for stroke that can include medical conditions, life style 

choices, genetic factors, and a person’s family history. Common risk factors for stroke 

include high blood pressure, high cholesterol, diabetes, atherosclerosis, atrial fibrillation, 

smoking, alcohol consumption, physical inactivity, sleep apnea, and obesity. The risk for 

stroke is also higher in individuals over the age of 55. Men have a higher risk of stroke 

compared to women. Non-Caucasian individuals have a higher rate of stroke than 

Caucasians. Individuals with a family history of stroke are at a higher risk and people 

who have had a previous stroke or transient ischemic attack (TIA) are at risk of having 

another stroke. TIA greatly increases a person’s risk of stroke as 40% of people with TIA 

have a stroke, 5% within 2 days and 10-15% within 3 months of the initial TIA (Roger et 

al. 2012).   

 

Treatment 

Recombinant tissue plasminogen activator (rTPA) is the only FDA approved treatment 

for ischemic stroke, with a treatment window of 4.5 h, which allows only 3-5% of patients 

to be eligible to receive treatment. Additionally, rTPA can cause transformation of an 

ischemic stroke into a hemorrhagic stroke. Currently there are no pharmaceutical 

treatments for hemorrhagic stroke, only strategies to manage the symptoms. There are 
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extensive exclusion criteria for the use of rTPA in order to minimize the risk for bleeding 

or hemorrhagic transformation. Recombinant TPA is contraindicated in individuals with 

ICH, intracranial or intraspinal surgery within the last three months, history of pervious 

stroke or ICH, uncontrolled blood pressure (>185 mm Hg systolic or >110 mm Hg 

diastolic), individuals over the age of 75, seizure at the onset of stroke, active internal 

bleeding, arteriovenous malformation, aneurysm, intracranial neoplasm, the use of oral 

anticoagulants, heparin administration within the previous 48 h, or a platelet count 

<100,000/mm3. Individuals with National Institutes of Health Stroke Scale (NIHSS) 

scores greater than 22 at presentation are excluded (Genentech 2011), as individuals 

with NIHSS scores >20 are at a higher risk of ICH (Adams et al. 2003). Diabetic 

individuals and individuals with hyperglycemia have an increased risk of ICH with 

thrombolytic therapy (Martini and Kent 2007).  

 

The therapeutic window for rTPA treatment in ischemic stroke is narrow at 4.5 h making 

it very difficult for stroke patients as many do not recognize the need for treatment within 

that time frame. Stroke patients must first identify that they are having a stroke and then 

they must seek medical treatment. After getting medical attention, the possibility of a 

cerebral hemorrhage must be ruled out as rTPA can only be used for embolic strokes. 

Once all these steps are performed the individual may still be ineligible to receive rTPA 

due to the strict inclusion criteria for the use of rTPA.     

 

Animal Models of Stroke 

There are different types of experimental models of both ischemic strokes and ICH. One 

model of ICH involves injecting bacterial collagenase type IV directly into the striatum of 

animals. The collagenase  disrupts the integrity of the basal lamina which leads to leaky 

blood vessels and a brain bleed (MacLellan et al. 2010). Ischemic strokes can be further 
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divided into two types of ischemia that can cause neural injury: global ischemia and focal 

ischemia. Global ischemia occurs when there is loss of blood flow to the whole brain 

such as during a myocardial infarction (MI) when blood flow to the whole body is 

stopped. Focal ischemia only affects certain areas of the brain and can be caused by a 

blood clot occluding a blood vessel. In animal models, global ischemia can be produced 

by temporarily stopping the heart which stops blood flow to the entire body including the 

brain. Focal cerebral ischemia can be performed to create an embolic stroke. While 

models of embolic stroke can be caused permanently by cauterizing a cerebral artery, 

most involve the middle cerebral artery (MCA), as the MCA is the most commonly 

occluded vessel in people. This method involves performing a craniotomy to visualize 

the cerebral vasculature and creates a small focal cortical lesion. Another method of 

creating a permanent occlusion is by injecting a clot into the common carotid artery, 

which becomes lodged in the smaller vasculature. One advantage to this procedure is 

that the animal is awake at the time of occlusion and it is a useful model to study 

thrombolytic therapies.  However, this model is not highly reproducible as the clot can 

become lodged in numerous different arteries. A minimally invasive procedure to induce 

focal cerebral ischemia involves photochemical thrombus formation by systemically 

administering the dye Bengal Rose. A blood clot forms when a laser is positioned 

against the skull and illuminated. The resulting focal infarct is a small cortical lesion 

without a penumbra or area of salvable tissue. One of the most commonly used 

experimental stroke models is the intraluminal filament model, also referred to as the 

middle cerebral artery occlusion (MCAO). This model involves inserting an embolus, a 

monofilament, into the external carotid artery and advancing the embolus to the origin of 

the MCA occluding blood flow to MCA territory. The monofilament can be tied off 

creating a permanent occlusion (pMCAO) or removed after a period of time to create an 
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ischemic reperfusion injury, also referred to as a transient occlusion (tMCAO) (for a 

comprehensive review, see (Braeuninger and Kleinschnitz 2009)).  

 

The Spleen and Ischemic Injuries Including Stroke: 

The Immune System 

The immune system is made up of a network of organs and cells which come together to 

form the functional unit. The two primary organs of the immune system are the bone 

marrow and the thymus. The bone marrow is the germinal center for all blood cells and 

the site of B cell maturation. T cells leave the bone marrow and mature in the thymus. 

Secondary peripheral immune organs include the spleen and lymph nodes. These two 

organs are areas where immune cells pool together and these sites are areas of filtration 

and immune surveillance. This filtering allows the immune system to quickly mount an 

immune response to a pathogen that is found in systemic circulation.  

 

The immune system can be divided into two categories: the innate immune system and 

the adaptive immune system. Each system has its own set of specialized cells and 

performs specific functions in the clearance of pathogens, tissue recovery from injury, 

and surveillance for tumor cells. The innate immune system is made up of neutrophils, 

monocytes, and natural killer cells (NK cells). These cells are the first responders to an 

immune challenge. Neutrophils are phagocytic cells that primarily engulf and kill evading 

or dying cells. Monocytes are known as antigen presenting cells (APCs). Cells of the 

monocytic lineage include macrophages, dendritic cells, and tissue specific 

macrophages including microglia (brain) and Kupffer cells (liver). These cells 

phagocytize pathogens and present what they find to T cells via the major 

histocompatibility complex (MHC) II. MHC II is found only on APCs and presents T cells 

with antigens, where MHC I is expressed on all cells and displays self peptides which 
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allow T cells and NK cells to determine if a cell should be present in the body. 

Intracellular pathogens will have their peptides expressed in MHC I which will trigger a 

cytotoxic response from NK cells or T cells. NK cells are cells of lymphocytic origin but 

they are able to recognize infected cells or tumor cells and generate a cytotoxic 

response without becoming activated by another cell. NK cells are able to induce 

apoptosis in virally or bacterially infected cells or malignant cells without any signals 

besides the activation of their receptors. Unlike the adaptive immune system, which can 

take days to weeks to generate a response to a pathogen, the innate immune system 

can generate an immediate response.   

 

The adaptive immune system consists of lymphocytes, T cells and B cells. The adaptive 

immune response takes days to weeks to initiate due to the highly specific nature of the 

receptors on T cells and B cells. These B and T cell receptors are very specific for their 

epitope on a particular antigen. These cells must come across their specific antigen to 

become activated and generate a response. B cells can generate a response without the 

signaling of other cells, although T cells can play a role in influencing antibody 

production. Activated B cells go on to produce antibodies directed against their specific 

antigen. T cells need to be presented with their antigen by APCs. The response 

generated by a T cell depends on the type of T cell. Cytotoxic T cells, or CD8+ T cells, 

recognize MHC I on cells and will initiate apoptosis in cells which are not presenting self 

peptides. Cells which are expressing pathogen peptides in MHC I will trigger a CD8+ T 

cell response if the pathogen peptide is the specific antigen for that T cell. The other 

subset of T cells is the T helper cells (Th cells), CD4+ T cells; of which there are many 

branching Th cell subsets. The two major Th responses are the Th1 response and the 

Th2 response. These two responses oppose each other.  A Th1 response is considered 

pro-inflammatory and is directed against intracellular pathogens, including bacteria and 
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viruses, while the Th2 response is considered anti-inflammatory, is directed at helminths 

and is responsible for generating allergic reactions. The main function of Th cells is to 

control or influence the immune response by secreting effector molecules or cytokines. 

Th cells can orchestrate an immune response by activating different cells of the innate 

immune system, cause isotype switching in B cells or recruit specific immune cell 

subsets to the area of inflammation. A special subset of Th cells is T regulatory (Treg 

cells) cells, which are responsible for stopping an immune response. These cells are 

important in ensuring the immune response does not cause additional injury to the 

surrounding tissue and in helping to decrease inflammation.       

 

Splenic Physiology  

The spleen is a highly vascularized secondary peripheral lymphoid organ.  The spleen 

has many functions including clearing dying red blood cells, removing hemoglobin from 

circulation, removal of bacterial pathogens from circulation, controlling iron homeostasis, 

and regulating the immune response and B cell antibody production. The spleen is 

divided into the red pulp and the white pulp. The white pulp is made up T cell zones, or 

periarteriolar lymphoid sheaths, and B cell follicles. The red pulp contains B cells, NK 

cells, and monocytes/macrophages that are in close proximity to the vasculature. This 

allows monocytes/macrophages to filter the blood for dying red blood cells, hemoglobin, 

and antibody covered bacterial pathogens. Plasma cells or antibody producing B cells 

are the specific type of B cells found in the red pulp. This location in the spleen allows for 

rapid delivery of antibodies into circulation (Mebius and Kraal 2005). NK cells in the red 

pulp resemble NK cells found in circulation (Witte et al. 1990). The white pulp is split into 

two areas, one for T cells and another for B cells. The T cell zones allow naïve T cells to 

be in close proximity to the arteriole blood supply. In addition to T cells, dendritic cells 

are present in the T cell zones to present naïve T cells with antigens the dendritic cells 
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find in the blood. Once activated, T cells leave the spleen and initiate an immune 

response. Specialized macrophages are found in the marginal zones of the white pulp 

which recognize both bacterial and viral blood borne pathogens. These cells are 

important in secreting cytokines and chemokines that influence T and B cells. Polyclonal 

expansion of B cells and isotype switching occur in the B cell follicles. Due to the close 

proximity of the cells within the white pulp, T cells can influence B cell isotype switching 

(Mebius and Kraal 2005).    

 

The splenic capsule is made up of smooth muscles that express α1 adrenergic 

receptors. Activation of the α1 receptors leads to contraction of the smooth muscles and 

a decrease in spleen size. In addition to being an immune cell reservoir, the spleen is 

also reservoir for red blood cells. During times of physical stress, the spleen has been 

shown to contract and release red and white blood cells into systemic circulation 

(Bakovic et al. 2005; Bakovic et al. 2003). The spleen is the largest reservoir of 

undifferentiated non-tissue specific monocytes and, in humans, contains half of the 

monocytic cell population. These cells have been shown to be released following MI and 

have detrimental effects on the damaged tissue as well as prevent tissue healing 

(Swirski et al. 2009).   

 

The Role of the Spleen in Ischemic Injuries 

The spleen is large reservoir of immune cells that can generate pro-inflammatory 

responses to various ischemic injuries. Splenectomy is protective in other ischemic 

injuries including the liver, intestines, kidneys, and heart. Removal of the spleen 

immediately prior to ischemic/reperfusion (IR) injury of the liver results in decreased 

levels of alanine aminotransferase levels (ALT) a biochemical markers of liver injury, and 

decreased hepatocellular injury. Additionally splenectomy reduced the number of 
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polymorphonuclear cells in the liver following liver IR (Okuaki et al. 1996). A later study 

found that splenectomy prior to hepatic IR reduced the elevated levels of two liver 

enzymes associated with liver damage, ALT and aspartate aminotransferase (AST), as 

well as tumor necrosis factor alpha (TNFα), and myeloperoxidase (MPO) activity in the 

liver, which is a marker of the presence of neutrophils.  In addition, hepatic IR is 

associated with injury to other organs including the kidneys, lungs, and intestines and 

splenectomy reduced cell apoptosis and caspase 3 signaling in all four organs (Jiang et 

al. 2007). Intestinal IR has been linked to acute lung injury. Kupffer cells in the liver 

become activated in intestinal IR. Blocking Kupffer cell activation using gadolinium 

chloride or splenectomy prior to intestinal IR resulted in significantly decreased levels of 

TNFα, interleukin 6 (IL-6), MPO, and malondialdehyde assay (MDA), a marker of lipid 

peroxidation, in the lungs. Polymorphonuclear leukocyte (PMNL) counts were also 

significantly decreased in the lungs in the gadolinium chloride and splenectomy groups. 

Gadolinium chloride treatment and splenectomy did not reduce the levels of any of the 

outcome measures down to sham IR operated groups (Savas et al. 2003). Kupffer cells 

also play a detrimental role following renal IR. Gadolinium chloride was administered or 

splenectomy was performed prior to renal IR. Both the gadolinium chloride and 

splenectomy groups had decreased histopathological changes compared to the renal IR 

group. In addition, serum ALT, AST, BUN, and creatinine levels were significantly 

increased in the renal IR group but significantly decreased in the gadolinium chloride 

and splenectomy groups. Tissue levels of MDA, MPO, and lactate dehydrogenase 

(LDH), a marker of cell death, were significantly elevated in the renal IR groups and 

significantly decreased in the treatment groups. Renal IR also decreased glutathione 

(GSH) levels and Na+/K+ ATPase activity while treatment with gadolinium chloride or 

splenectomy restored the activity of these two proteins (Kara et al. 2009). The studies on 

intestinal IR and renal IR both concluded that splenectomy was protective because of 
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the removal of a large reservoir of monocytes. Monocytes have also been found to play 

an important role in exacerbating injury following myocardial infarction (MI). 

Sequestering splenic monocytes in the spleen with enalapril, an angiotensin-converting 

enzyme (ACE) inhibitor, or splenectomy prior to experimental MI decreased 

inflammation and infarct size (Leuschner et al. 2010).  

 

Monocytes have been shown to play a detrimental role in ischemic pathology in many 

organs. As the spleen contains a majority of the monocytes in the body, this suggests 

these cells are responsible for IR organ damage. This has lead to the conclusion that the 

spleen is an important mediator of post IR injury tissue damage. Additionally blocking 

Kupffer cell activation with gadolinium chloride was as efficacious as splenectomy in 

renal and intestinal IR. These studies indicated that the spleen activates Kupffer cells in 

a pro-inflammatory state that increases tissue damage following IR injuries. Kupffer 

cells, like microglia, are tissue-specific macrophages. If the spleen causes Kupffer cell 

activation following IR injuries to the kidney and intestines, then the spleen might be 

negatively influencing microglia in the same manner, which would increase neural injury 

following ischemic brain injury. 

 

Removal of the spleen is also protective in pMCAO, tMCAO, ICH, and traumatic brain 

injury (TBI) (Ajmo et al. 2008; Jin et al. 2013; Lee et al. 2008; Das et al. 2011; Li et al. 

2011; Walker et al. 2010). Splenectomy prior to pMCAO in rats decreases infarct volume 

and the number of neutrophils and activated microglia in the brain (Ajmo et al. 2008). In 

mice, splenectomy prior to tMCAO decreased infarct volume, brain IFNγ levels, and did 

not increase post stroke infections (Jin et al. 2013). Brain water content was significantly 

lower in splenectomized animals compared to intact animals prior to ICH (Lee et al. 

2008). Splenectomy immediately after TBI was found to decrease neural injury in two 
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different models of experimental TBI (Walker et al. 2010; Das et al. 2011; Li et al. 2011), 

which creates areas of ischemia from vessel damage and edema following TBI. As an 

alternative to splenectomy, irradiation of the spleen 4 h post tMCAO decreases infarct 

volume in rats similar to the effects of splenectomy prior to pMCAO. Splenic irradiation 

causes a temporary decrease in splenocytes which does not result in wide spread 

immunosuppression (Ostrowski et al. 2012). These experiments all demonstrate that the 

spleen plays an inflammatory role in brain injuries and ischemic injuries to other organs. 

Further investigation is needed to determine the mechanisms by which the spleen is 

inflammatory following ischemic injuries.  

 

Spleen Size Decreases following Permanent and Transient MCAO 

The spleen has been found to decrease in size following pMCAO in rats (Vendrame et 

al. 2006) and tMCAO in mice (Offner et al. 2006b). The spleen transiently decreases in 

size from 24 to 72 h following pMCAO in rats (Seifert et al. 2012). The transient changes 

seen in pMCAO are likely due to the catecholamine (CA) surge which occurs following 

damage to the insular cortex, an area mainly perfused by the MCA. Activation of the α1 

adrenergic receptors on the splenic smooth muscle capsule results in contraction of the 

splenic capsule, which leads to the decrease in spleen size. Administration of prazosin, 

an α1 adrenergic receptor blocker, prevents the decrease in spleen size following 

pMCAO (Ajmo et al. 2009).  Spleen size has also been inversely correlated with infarct 

volume in rats following pMCAO, with smaller spleen sizes correlating with larger infarcts 

(Vendrame et al. 2006). The splenic response in mice following tMCAO appears to be 

different from the response observed in rats following pMCAO. The spleens of mice 

continually decrease in size following tMCAO out to 96 h. This decrease in spleen size 

appears to be due to apoptosis of the spleen and a loss of the germinal B cell centers. 

The only immune cell population that has been shown to decrease in number following 
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tMCAO in mice are B cells (Offner et al. 2006b). There are several reasons that could 

explain the observed differences in the splenic response to MCAO. The studies were 

performed in different animal species, mice compared to rats, and the observations were 

made in two different injury models, transient versus permanent MCAO. There are many 

factors that could result in the differences seen in mice and rats following MCAO. The 

only way to determine how the spleen responds to stroke is to study stroke patients. 

 

Studies are currently being conducted which examine spleen size in stroke patients to 

truly understand the role the spleen plays in patients following stroke. One such study is 

currently being conducted and preliminary data indicates that the spleen in individuals 

who have suffered a stroke decreases in volume initially, < 6 h to 3 days, and slowly 

begins to increase in volume starting at day 4 and continuing out to 8 days following the 

stroke. An individual who suffered a severe stroke and ultimately died had spleen 

volumes that continued to decrease as their NIHSS score also progressively increased, 

indicating a worsening of neurological symptoms. Two other individuals who had better 

outcomes had spleens that initially decreased in volume and began to increase in 

volume as their NIHSS scores decreased. One of the two individuals had their spleen 

volume measured 90 days following their stroke and at 90 days the individual’s spleen 

volume was not different from the measurement taken at discharge (Sahota et al. 2013).  

 

Stem Cell Therapies and the Spleen 

Human umbilical cord blood (HUCB) cells (Vendrame et al. 2004; Makinen et al. 2006; 

Zhang et al. 2011), hematopoietic stem cells (HSC) (Schwarting et al. 2008), bone 

marrow stem cells (BMSC) (Keimpema et al. 2009), and neural stem cells (NSC) (Lee et 

al. 2008) have all been shown to reduce neural injury in experimental models of stroke. 

Stem cells are more efficacious when administered systemically compared to 
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intracerebral administration. When administered systemically, stem cells migrate to the 

spleen (Lee et al. 2008; Schwarting et al. 2008; Keimpema et al. 2009; Vendrame et al. 

2004), which may be why the cells are more efficacious via this injection route. Even 

NSCs migrate to the spleen following intracerebral hemorrhage and are not as 

efficacious when combined with splenectomy. NSCs were found to be in direct contact 

with CD11b+ splenocytes (Lee et al. 2008). This suggests that part of the 

neuroprotection provided by NSCs involves interacting with the spleen. HUCB cells are 

another cell type that has been shown to interact with splenocytes. Systemic 

administration of HUCB cells 24 h post pMCAO results in altered splenic T cell 

responses to concovalin A. Splenic T cells had decreased cell proliferation and 

decreased production of inflammatory cytokines TNFα and interferon gamma (IFNγ) with 

an increase in the production of the anti inflammatory cytokine interleukin 10 (IL-10). 

HUCB cells also prevent the decrease in spleen size seen at 48 h in rats. This effect is 

thought be mediated by HUCB cells sequestering immune cells in the spleen following 

MCAO, preventing their release into systemic circulation (Vendrame et al. 2006). This 

set of experiments suggests stem cell therapies work in part by modulating the immune 

response to stroke, specifically at the level of the spleen. 

 

The Initial Cascade of Neural Death following Stroke 

The hypoxic and glucose deprived environment that develops following ischemic stroke 

leads to cellular dysfunction and cell death through necrosis or apoptosis. In an attempt 

to keep up with the high energy demands in the brain, neural cells switch to anaerobic 

cellular respiration. Cell membranes become damaged from the resulting build up of 

reactive oxygen and nitrogen free radicals, which leads to cellular edema and necrosis. 

Additionally, as neurons and astrocytes die there is a release of glutamate that 

compromises more neurons through glutamate excitotoxicity. The activation of glutamate 
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receptors leads to excessive intracellular calcium release, edema, and caspase 

activation resulting in apoptosis (Lipton 1999). All of these mechanisms lead to early cell 

death in the core of the infarct, the area directly perfused by the occluded artery.  

 

In addition to neural cell death, activation of matrix metalloproteinases (MMPs) lead to 

the opening of the blood-brain-barrier (BBB). Shortly after occlusion the BBB is broken 

down transiently by MMP-2. Later, at 48 h post MCAO, up regulation of MMP-9 leads to 

a prolonged disruption of the BBB (Candelario-Jalil et al. 2009). This break down in the 

BBB allows neural antigens into the peripheral circulation. The leaky BBB contributes to 

enhanced neural injury by increasing edema as intracranial pressure builds from the 

influx of excess fluid. This BBB dysfunction also allows the immune system to come in 

contact with these neural antigens and generate an immune response to the brain.  

 

The Peripheral Immune Response to Stroke: 

 Cellular Response 

The CNS has a structurally different network of capillaries that are different from the rest 

of the body. Within the CNS, the endothelial cells closely control which substances or 

cells can enter the brain or spinal cord. The specialized endothelial cells have 

extracellular tight junctions connecting neighboring cells together and these cells are 

closely associated with a basement membrane and extracellular matrix. The absence of 

fenestrations in the endothelial cells and reduced pinocytotic activity also contribute to 

the protection of the brain by the cerebral vasculature. This restricted access to the brain 

created by these cells is known as the BBB (de Vries et al. 1997). The BBB protects the 

brain from exposure to anything harmful in the blood. This includes protection from the 

peripheral immune system under normal healthy conditions. Generally, the only immune 

cells present in the brain are the endogenous macrophages, microglia. Occasionally a T 
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cell may enter the brain but due to the decreased expression of MHC molecules in the 

CNS, the T cell leaves the brain within 24-48 h (Miller 1999). This makes the brain an 

immunoprivileged site which is beneficial in protecting the brain from systemic 

inflammation. However, neural antigens can be seen as foreign to the immune system 

resulting in immune responses generated against neural antigens which are present in 

systemic circulation following brain injuries, including stroke.  

 

The peripheral immune system, both the innate and the adaptive systems, plays an 

important role in the inflammatory response following ischemic brain injury. The injured 

cells of the CNS, in combination with glial cells which become activated after a stroke, 

express chemotaxic molecules that signal to the peripheral immune system that there is 

an injury to the brain. Various cytokines cause up regulation of vascular adhesion 

molecules in endothelial cells and on immune cells. This creates a leaky BBB which 

allows entry of immune cells into the brain (de Vries et al. 1997). 

 

 Cells of monocytic origin, CD11b+ cell, become activated as early 18 h and are 

significantly increased in number out to 96 h post tMCAO in mice (Stevens et al. 2002). 

It is not possible to determine the difference between microglia and peripheral 

monocytes/macrophages, as both types of cells express CD11b. Microglia/macrophages 

become maximally activated in the brain 72 h post pMCAO in rats (Leonardo et al. 

2010). Neutrophils are significantly increased in the infarcted hemisphere beginning 48 h 

and remain elevated out to 96 h post tMCAO. As expected with an adaptive immune 

response T cells, CD3+ cells, are present in the brain starting 72 h and remain at 96 h 

post tMCAO (Stevens et al. 2002).  
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There is strong experimental evidence that peripheral immune cells, particularly 

lymphocytes, play a role in enhancing neural injury after an ischemic stroke. Following 

tMCAO, Rag-/- mice which lack functional T or B cells have decreased infarct volumes 

compared to wild type (WT) mice. T cell-/- mice, both CD4-/- and CD8-/-, have decreased 

infarct size compared to WT mice. However B cell-/- mice had infarcts similar to WT mice 

indicating B cells play a minimal role in detrimental post stroke brain inflammation 

(Yilmaz et al. 2006). Additionally, severe combined immunodeficiency (SCID) mice, 

which lack lymphocytes, also have reduced infarcts compared to WT mice. SCID mice 

also have reduced cytokine levels, except for interleukin 1β (IL-1β), in the brain post 

tMCAO (Hurn et al. 2007). T cells that are primed to react with a pro-inflammatory 

response to myelin oligodendrocyte glycoprotein (MOG) prior to tMCAO increased 

infarct volumes in mice (Ren et al. 2012) or resulted in death following sensitization with 

myelin basic protein (MBP) prior to tMCAO in rats (Becker et al. 1997) compared to 

animals primed with a non-neural neutral antigen. However, T cells that are tolerized to 

MBP prior to tMCAO have decreased infarct volume compared to controls (Becker et al. 

1997). The reaction of the immune system towards neural antigens, which is 

orchestrated by Th cells, can be harmful or beneficial following ischemic stroke.  

  

Humoral Response 

Cytokines have been extensively studied following experimental stroke and in stroke 

patients. Most of the data regarding cytokines and stroke have been contradictory, as 

some cytokines have dual roles in the immune response and can be protective or 

detrimental depending on the circumstances. Some cytokines can be inflammatory early 

after a stroke, but provide trophic support to cells at delayed time points. Other cytokines 

can have survival or inflammatory effects depending on the receptor to which they bind. 

Additionally, some cytokines are elevated very early following stroke. All the above 
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stated examples demonstrate why no good therapeutic targets for cytokines have been 

developed.  

 

In mouse models of tMCAO, TNFα, IL-1β, and IL-10 have elevated mRNA levels 6 h 

post tMCAO (Chang et al. 2011; Offner et al. 2006a). All of these cytokines are elevated 

at a time that is outside the therapeutic window to successfully interfere with their 

signaling. IL-1β mRNA expression increases early in the brain after an ischemic event 

and remains elevated out to 96 h post tMCAO (Chang et al. 2011). IL-1β is expressed by 

non immune cells in the brain. Primary producers of IL-1β in the brain are astrocytes and 

microglia (de Vries et al. 1997), which could explain why IL-1β is the only cytokine that 

does not have decreased expression in SCID mice following tMCAO (Hurn et al. 2007). 

IL-10 is considered an anti-inflammatory cytokine and is associated with a Th2 response. 

IL-10-/- mice have increase infarct volumes compared to WT mice following tMCAO 

(Liesz et al. 2009) and mice that over-express IL-10 have decreased infarct volumes 

compared to controls following pMCAO (de Bilbao et al. 2009). This suggests IL-10 may 

play a beneficial role following brain ischemia.  

 

TNFα is also expressed early in the brain and is primarily responsible for the activation 

of the immune system and recruitment of other immune cells. In addition to being 

expressed early, TNFα is known to have different effects following brain ischemia. TNFα 

has been shown to exacerbate infarct volume in both tMCAO and pMCAO in a dose 

dependant manner (Barone et al. 1997). However, TNFα-/- mice had increased infarct 

volumes compared to WT mice following pMCAO (Lambertsen et al. 2009). This 

suggests TNFα plays a protective role following ischemic stroke, but when TNFα 

converting enzyme (TACE) was inhibited, causing a decrease in TNFα production prior 
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to and following pMCAO, TACE-inhibited rats demonstrated decreased infarct volume 

and reduced neurological deficits compared to control rats (Wang et al. 2004).  In 

addition, blocking TNFα with a neutralizing antibody injected intracerebroventricularly 

(i.c.v.) 15 min post tMCAO in mice decreased infarct volume, however, administration of 

the same antibody 3 days post tMCAO did not decrease infarct volume (Liesz et al. 

2009). TNFα has also been linked to the up regulation of manganese superoxide 

dismutase (Mn-SOD), an important anti-oxidant enzyme that is believed to play a role in 

ischemic preconditioning in stroke (Hallenbeck 2002). All of the contradictory results in 

experimental stroke with TNFα could be due to the two different TNFα receptors and the 

subsequent cellular processes induced by these receptors. 

 

The two TNFα receptors, when activated, can result in different cellular responses 

depending on the cell type or the presence of both receptors on the same cell. TNFα can 

initiate a response resulting in apoptosis and the production of cytokines or be protective 

by preventing apoptosis. The two different receptors, TNFαR1 and TNFαR2, result in a 

combination of different cellular responses. TNFαR1 has an intracellular death domain 

that can divert the cellular response to TNFα in a Fas-associated protein with a death 

domain (FADD) towards apoptosis or the binding of TNF-receptor associated protein 2 

(TRAP2) which leads to the transcription of anti-inflammatory factors. FADD signals to 

activate caspase 8 leading to apoptosis. TRAP2 leads to the activation of NFκB and c-

JUN which induce anti-apoptotic, anti-inflammatory and cellular protective proteins 

(Hallenbeck 2002). TNFαR1 is expressed on all cells, while TNFαR2 is expressed only 

on oligodendrocytes, astrocytes, T cells, myocytes, endothelial cells, thymocytes, and 

human mesenchymal stem cells. TNFαR2 does not contain an intracellular cytoplasmic 

death domain and activation leads to the recruitment of TNF receptor-associated factor 2 
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(TRAF2). TRAF2 acts similarly to TRAP2 and activates NFκB, AP1, and mitogen-

activated protein kinase (MAPK). The activation of these pathways leads to 

inflammation, cellular proliferation, and cell survival (Speeckaert et al. 2012). In pMCAO 

experiments with TNFαR knockout mice, TNFαR1-/- was associated with neuroprotection 

while TNFαR2-/- was not associated with neuroprotection (Lambertsen et al. 2009). 

Studies using cuprizone toxicity as a model of white matter injury found that TNFα is 

important in the recruitment of oligodendrocyte progenitors to remyelinate axons. This 

TNFα signaling is mediated through the TNFαR2 (Arnett et al. 2001). The diverse effects 

of TNFα can be contributed to many factors including timing of TNFα signaling and the 

receptors it signals through, and the contradictory outcomes in animal experiments 

indicate TNFα is not a good therapeutic target for stroke. Additionally it is initially 

elevated outside therapeutically relevant time points to treat stroke.  

 

Another cytokine that has been research extensively in experimental stroke is IL-6. One 

of the primary reasons a lot of emphasis has been placed on IL-6 is because it is 

detectable in the serum of stroke patients. Serum IL-6 levels in stroke patients have  

been shown to be the strongest independent predictive variable of in hospital mortality 

following stroke (Rallidis et al. 2006). IL-6 mRNA levels are elevated early in the brain 

following tMCAO in mice (Offner et al. 2006a). Despite evidence that IL-6 might be 

playing a detrimental role in stroke pathology, there has been very little investigation into 

blocking IL-6 as a therapeutic for stroke which is likely due to the confounding data from 

animal studies looking at IL-6 and experimental stroke. IL-6-/- mice had infarcts that were 

not significantly different than their WT or heterozygous littermates following tMCAO 

(Clark et al. 2000). However, IL-6 is known to have pyrogenic activity and IL-6-/- mice 

were found to have lower body temperatures compared to WT mice. Body temperature 
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is known to play an important role following any brain injury, including stroke. When     

IL-6-/- mice had their body temperatures monitored and adjusted to match the WT mice, 

the IL-6-/- had significantly increased infarct volumes and increased neurologic deficits 

compared to the WT mice following MCAO (Herrmann et al. 2003). An additional study 

found i.c.v. administration of recombinant IL-6 prior to pMCAO in rats significantly 

decreased infarct volume suggesting IL-6 is directly neuroprotective (Loddick et al. 

1998). A different study using IL-6-/- mice found increased infarct volumes compared to 

WT mice following tMCAO out to four weeks. This study suggested the loss of IL-6 was 

important for angiogenesis during the recovery phase following stroke (Gertz et al. 

2012).  

 

One reason for the conflicting experimental data with IL-6 could be due to the multiple 

functions of IL-6. Prior to being named IL-6, the 26-kDa protein was named B-cell 

stimulatory factor 2, IFN-β2, hybridoma/plasmacytoma growth factor and hepatocyte 

stimulating factor along with 26-kDa protein. Once DNA sequencing was completed it 

was discovered that all five proteins were the same molecule (Kishimoto 2010). IL-6 

signals through one receptor that is a complex of the IL-6R and gp130. The cytoplasmic 

domain of gp130 contains several signaling motifs that allow IL-6 to signal through ERK 

or Jak1 and STAT3 or STAT1. STAT3 and STAT1 can form homodimers or a 

heterodimer once activated. These different signaling pathways allow IL-6 to have 

diverse effects on a variety of cells and cellular functions. IL-6 is important for liver 

regeneration, angiogenesis, bone, cartilage, and lipid metabolism, iron homeostasis, and 

is known to promote cancer cell survival. The immune functions that IL-6 plays a role in 

include promoting neutrophil production and recruitment, enhances antibody production 

by B cells, and works with transforming growth factor beta (TGFβ) to increase the 
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production of pro-inflammatory Th17 cells. Th17 are thought to play a major role in 

autoimmune diseases (Mihara et al. 2012). IL-6 plays many different roles following 

stroke depending on the exact timing following the stroke, which makes targeting IL-6 

after stroke extremely difficult. 

 

Out of numerous studies on cytokines in animals and stroke patients, there has yet to be 

a therapeutic developed for stroke. Many cytokines are part of the innate immune 

response and increase rapidly following stroke, while other cytokines have dual roles 

following stroke or serve a potentially protective function. One cytokine has not been 

extensively studied and could have the promise of providing a delayed therapeutic 

option that is strictly pro-inflammatory. IFNγ is the signature cytokine of the adaptive 

immune Th1 response. 

 

The Importance of Interferon Gamma Signaling following Stroke: 

Interferon Gamma and its Receptors 

IFNγ is a pleiotropic cytokine that can affect cellular processes ranging from immune cell 

function to playing a role in vascular leukocyte adhesion. The 34-kDa homodimer is the 

biologically active form of IFNγ (Boehm et al. 1997). The half-life of IFNγ in the blood is 

1.1 min if it is not bound to heparin or heparin sulfate, and when bound the half-life is 

increased to 99 min. When IFNγ is injected into the bloodstream, 90% of the protein is 

proteolytically cleaved at the carboxyl-terminal within 5-10 min rendering it inactive. The 

other 10% becomes bound to a heparin molecule, increasing its half-life (Lortat-Jacob et 

al. 1996). The biologically active form of IFNγ binds to the IFNγ receptor complex that is 

comprised of two pairs of transmembrane proteins which signal through the Janus 

kinases (Jaks), and signal transducers and activators of transcription (STATs). Of the 
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two different proteins that make up the IFNγ receptor, the IFNγR1, or the α-chain, is the 

part of the receptor that binds IFNγ. Following binding of IFNγ the α-chain dimerizes with 

another α-chain. Then, the second protein IFNγR2 or the β-chain dimerizes with another 

β-chain to the complex. The β-chain is primarily involved in signaling, whereas the α-

chain is primarily involved in binding IFNγ. Jak1 is associated with the α-chain and Jak2 is 

associated with the β-chain. Once IFNγ binds, the Jaks become phosphorylated and 

phosphorylate STAT1α that homodimerizes and translocates to the nucleus to affect 

transcription. The IFNγ receptor is expressed on every cell in the body but its density 

varies from cell type to cell type with immune cells, monocytes in particular, having the 

highest expression.  

 

The primary producers of IFNγ are T cells, CD4+ Th1 cells, CD8+ T cells, and NK cells. 

IFNγ production is induced by IL-12, IFNα, and even by IFNγ through positive feedback. 

IFNγ induces the production of more IL-12 by macrophages which further increase IFNγ 

production. In addition to increasing its own expression, IFNγ causes increased 

expression of proteins involved in the generation of reactive oxygen species (ROS), 

chemotaxis of more immune cells to the site of injury, up regulation of MHC molecules, 

and induces isotype switching in B cells. Indirectly, there is also an increase in cellular 

adhesion molecules on endothelial cells by IFNγ through up regulating chemokines, 

including monocyte chemoattractant proteins (MPCs), monokine induced by gamma 

interferon (MIG), interferon-inducible protein 10 (IP-10), IL-8, and interferon-inducible T 

cell α chemoattractant (I-TAC). With the recruitment of additional immune cells to the site 

of injury, IFNγ also primes T cells and cells of monocytic origin towards a pro-

inflammatory phenotype. IFNγ and its effector molecules prime naïve Th cells to develop 

into Th1 cells, blunting the response of other Th subsets. Microglia/macrophages 
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become activated in towards a pro-inflammatory state by the up regulation of ROS 

production and MHC II expression. The primary role IFNγ plays in the immune response 

is to increase resistance to bacteria and viruses, particularly against intracellular 

pathogens. To obtain this immune response, the primary target cells of IFNγ in the 

immune system are macrophages. These cells are also the primary producers of all the 

chemokines like IP-10, MIG, and I-TAC.  

 

The Detrimental Role of IFNγ following Ischemic Brain Injury 

There are several data in animals and stroke patients indicating IFNγ plays a detrimental 

role in stroke pathogenesis. IFNγ mRNA is up regulated 2 days post pMCAO in the brain 

of rats (Li et al. 2001). Additionally, IFNγ-/- mice have decreased infarcts compared to WT 

mice and the IFNγ-/- mice infarcts are comparable to Rag-/- mice (Yilmaz et al. 2006). 

Delayed administration of antibodies directed against IFNγ decreased infarct volume 

when injected i.c.v. 3 days, but not early, post tMCAO (Liesz et al. 2009). In addition, 

indirect blocking of IFNγ is neuroprotective. Administration of an anti CD49d (VLA-4) 

antibody 24 h prior to the MCAO reduced infarct volume and blocked T cells and NK 

cells from entering the brain following tMCAO. This prevented IFNγ producing cells from 

entering the injured brain, decreased IFNγ levels and infarct volume (Liesz et al. 2011). 

In stroke patients that developed an infection, particularly pneumonia, within 15 days of 

having a stroke had a worse outcome compared to individuals that did not develop an 

infection, regardless of stroke severity. Individuals that developed an infection were 

more likely to have a Th1 response to myelin basic protein (MBP) and glial acid fibrillary 

protein (GFAP) at 90 days post stroke, and individuals that generated a higher Th1 

response to MBP at 90 days were more likely to have a poorer outcome regardless of 

age or baseline stroke severity (Becker et al. 2011). As IFNγ is considered a signature 
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cytokine of a Th1 response, this could implicate IFNγ as being detrimental following 

stroke in patients when an inflammatory T cell response is generated against brain 

antigens.  

 

The Generation of an IFNγ Driven Response to Brain Antigens following Stroke 

IFNγ levels in the spleen and in the brain could become increased due to the elevated 

levels of circulating catecholamines. Increased levels of circulating norepinephrine (NE) 

and epinephrine have been found in humans and rats after they experience a blockage 

of the MCA (Meyer et al. 2004; Cechetto et al. 1989). The additional amount of 

circulating CAs has been attributed to insular cortex damage, which is mainly perfused 

by the MCA. Damage to this region in patients has also been shown to cause 

sympathetic dysregulation (Meyer et al. 2004).  Furthermore, NE reduces the ability of 

Th1 cells to respond when activated, and this effect is thought to be mediated by the 

presence of β2 adrenergic receptors on Th1 cells (Sanders et al. 1997). However, naïve 

T cells also express β2 adrenergic receptors. When naïve T cells are exposed to NE, 

these cells are driven to differentiate into the Th1 phenotype. Upon reactivation, these 

cells express 2-4 fold more IFNγ than naïve T cells not exposed to NE (Swanson et al. 

2001). This effect of NE on naive T cells and Th1 cells may account for the immune 

dysfunction to pathogens and the increased levels of IFNγ production observed in the 

spleen following MCAO.  

 

In addition, the cells which are becoming activated in the presence of catecholamines 

are also being exposed to brain derived antigens that enter circulation following stroke 

(Herrmann et al. 2000; Wunderlich et al. 1999). This could lead to a Th1 response to 

brain antigens, which has been shown in animal studies to result in a more severe injury 
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(Becker et al. 2005). This may also be mediated through IFNγ, as IFNγ is considered an 

initiator of a Th1 response. 

 

Interferon Gamma and the Splenic Response following Cerebral Ischemia 

Interferon gamma and the spleen both have the potential to play important roles in 

exacerbating neural injury following ischemic stroke. The splenic response does 

contribute to increased neural cell death following brain injuries. Additionally, 

experiments have measured early IFNγ mRNA levels following experimental stroke in 

animals, however, no experiments have been conducted to address whether IFNγ 

protein expression is increased following ischemic stroke. Therefore, the first set of 

experiments were designed to test the following hypotheses: 1) increased levels 

of IFNγ protein are found in the brain and the spleen following pMCAO, and 2) this 

increased level of IFNγ protein in the brain is connected to the increased levels 

found in the spleen and this increases neural injury. 

 

Splenectomy experiments have demonstrated that the splenic response to brain injuries 

is detrimental. Studies using stem cells to treat experimental stroke have shown that 

stem cells, including neural stem cells, are more efficacious when administered 

systemically compared to local administration. These cells have also been found in the 

spleen following systemic administration and that the spleen is necessary for these cells 

to exert all their protective effects. The spleen is a major reservoir of immune cells and 

peripheral immune cells have been found in the brain following stroke. The second set 

of experiments were designed to test the following hypotheses: 1) labeling 

splenocytes in vivo prior to pMCAO will allow these cells to be tracked after 

pMCAO, 2) labeled splenocytes are found in the brain following pMCAO, and 3) 
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the splenocytes in the brain will be contributing to exacerbating neural injury 

directly or indirectly by influencing the environment within the infarct. 

 

IFNγ is known to induce several proteins, many of which are chemokines. IP-10 is of 

particular interest as it plays a role in influencing the differentiation of naïve Th cells to 

become Th1 cells and is a strong chemoattractant for Th1 cells while subsequently 

blocking the activation of Th2 cells. The recruitment of more pro-inflammatory Th1 cells 

would result in more IFNγ production and further activation of microglia/macrophages. 

This would create a feed-forward inflammatory environment in the stroke-injured brain. 

Blocking or interfering with IFNγ signaling could provide a targeted approach to blunting 

just the pro-inflammatory response and not the whole immune response that is seen with 

broad immunosuppressants, like cyclosporine. The final set of experiments were 

designed to test the hypotheses: 1) systemic administration of an IFNγ 

neutralizing antibody 6 h post pMCAO will decrease infarct volume, 2) treatment 

with a neutralizing antibody against IFNγ will decrease the levels of IP-10 the brain 

and spleen, and 3) decreased levels of IP-10 will blunt the pro-inflammatory 

response in the brain by decreasing the number of T cells recruited to the brain 

following stroke. 
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Note to Reader 

The contents of this section have been previously published (Seifert et al. 2012b) and 

are utilized with permission of the publisher. 

 

Abstract 

Delayed neuronal death associated with stroke has been increasingly linked to the 

immune response to the injury. Splenectomy prior to middle cerebral artery occlusion 

(MCAO) is neuroprotective and significantly reduces neuroinflammation. The present 

study investigated whether splenic signaling occurs through interferon gamma (IFNγ). 

IFNγ was elevated early in spleens but later in the brains of rats following MCAO. 
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Splenectomy decreased the amount of IFNγ in the infarct post-MCAO. Systemic 

administration of recombinant IFNγ abolished the protective effects of splenectomy with 

a concurrent increase in IFNγ expression in the brain. These results suggest a role for 

spleen-derived IFNγ in stroke pathology. 

Introduction 

Current clinical and animal research has shown a complex interplay between the 

peripheral immune system and the progression of stroke-induced neurodegeneration. 

The brain communicates with the immune system largely via direct innervation of the 

lymphoid tissues and humoral control provided by the hypothalamic-pituitary-adrenal 

axis (Chrousos 1995).   

 

The spleen is a mediator of the immune response to ischemic injury in all organ systems 

examined.  Splenectomy reduces the ischemic-induced immune response in the liver 

(Okuaki et al. 1996), gastrointestinal system (Savas et al. 2003), kidney (Jiang et al. 

2007) and brain (Ajmo et al. 2008).  These reports indicate that the presence of the 

spleen is necessary for promotion of the inflammatory response to ischemic injury which 

is responsible for delayed cellular death.  Splenectomy two weeks prior to middle 

cerebral artery occlusion (MCAO) in the rat significantly reduces infarct volume with a 

concomitant decrease in  the number of immune cells within the infarct (Ajmo et al. 

2008). The inflammatory signal from the spleen to the ischemic brain or other organs 

has yet to be identified. 

 

Many studies have attempted to decipher the immune signature for an inflammatory 

response to stroke (Offner et al. 2006; Liesz et al. 2009a; Ren et al. 2010; Becker et al. 

2005).  Many different gene knockout models of inflammatory cytokines have been 
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characterized in the field of stroke showing various degrees of increased neuronal death 

or protection (Lucas et al. 2006; Boutin et al. 2001).  One study reports that the deletion 

of the interferon gamma (IFNγ) gene decreases brain damage after MCAO (Yilmaz et al. 

2006).  Moreover, when IFNγ neutralizing antibodies are infused intraventricularly three 

days post-MCAO this protects the brain from stroke induced injury (Liesz et al. 2009b). 

Also, mice with increased levels of brain IFNγ as a result of over-expression in 

oligodendrocytes (OL), have increased infarcts compared to wild-type mice (Lambertsen 

et al. 2004).  IFNγ is associated with the Th1 inflammatory response by activating cells of 

the monocytic lineage, microglia and macrophages. Since activation of 

microglia/macrophages is partly responsible for the delayed cellular damage after 

ischemic insult, this cytokine could play a role in the splenic response by exacerbating 

the inflammation associated with ischemic injury. 

 

In the present study, we examined the expression of IFNγ after MCAO.  We discovered 

that splenectomy reduced IFNγ expression in the brain after MCAO and that systemic 

administration of IFNγ reversed the protective effects of splenectomy.  These findings 

indicate that IFNγ may be one of the inflammatory signals originating from the spleen 

causing a delayed inflammatory response in the ischemic brain. 

Materials and Methods 

Animal Care  

All animal procedures were conducted in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals with a protocol approved by the Institutional Animal Care 

and Use Committee at the University of South Florida. Male Sprague-Dawley rats (300-

350g) were used for the in vivo experiments. Postnatal day 3 (P3) rat pups from untimed 

pregnant female rats were used for in vitro primary oligodendrocyte cell culture 
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experiments and prenatal day 18 (E18) rat embryos from timed pregnant females were 

used for in vitro primary neuron cell culture experiments. All rats were purchased from 

Harlan Labs (Indianapolis, IN), maintained on a 12 h light/dark cycle (6 am – 6 pm) and 

given access to food and water ad libitum. 

 

Splenectomy  

Splenectomies were performed two weeks prior to MCAO by making a midline skin 

incision at the caudal terminus of the 13th rib on the anatomical left. The abdominal wall 

was opened along midline and the spleen was externalized through the incision with 

blunt forceps. The splenic blood vessels were ligated and the spleen was removed. The 

incision was then closed with sutures, first closing the abdominal cavity and then the skin 

incision. Sham operations were also performed where the spleen was exteriorized and 

then reinserted into the cavity.  

Laser Doppler Blood Flow Measurement  

Laser Doppler was used to monitor blood perfusion (Moor Instruments Ltd, Devon, 

England). A hole was drilled into the right parietal bone (1 mm posterior and 4 mm lateral 

from Bregma), and a guide screw was set. The probe was inserted into the guide screw, 

and the tip of the probe was placed against the pial surface of the brain. Rats that did not 

show ≥ 60% reduction in perfusion during MCAO were excluded from the study (Ajmo et 

al. 2006; Ajmo et al. 2008; Hall et al. 2009a) 

 

Permanent Middle Cerebral Artery Occlusion  

MCAO surgery was performed using the intraluminal method originally described by 

Longa et al. (Longa et al. 1989) and previously reported (Ajmo et al. 2006; Ajmo et al. 

2008; Hall et al. 2009a). Briefly, rats were anesthetized, the common carotid artery 
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was separated from the vagus nerve, and blunt dissection was performed to isolate the 

internal carotid artery (ICA), and the external carotid artery (ECA). A 40 mm 

monofilament was introduced into the ECA, fed distally into the ICA, and advanced 

approximately 25 mm through the Circle of Willis to the origin of the middle cerebral 

artery. The filament was tied off at the internal/external carotid junction to produce 

permanent occlusion. The incision was then sutured closed and the rat was allowed to 

wake in a fresh cage. Following recovery, animals were randomly assigned into 

treatment groups. 

 

Recombinant IFNγ Administration  

Naïve rats were given increasing doses of rIFNγ until an observable physiological 

response occurred to determine the optimal rIFNγ dosage.  A physiological response to 

the rIFNγ was determined by the presence of several characteristics: pilo erection, 

excessive porphrin production, lethargy, and chills or fever. The rats were monitored 

every 15 min for 2 h following i.v. injections. The dosage of 20 μg was the lowest dosage 

which elicited a physiological response and was used to determine the effects of IFNγ on 

neural injury in splenectomized and sham-splenectomized rats.  The animals were 

injected intravenously (i.v.), via the tail vein, at 48 and 72 h post-MCAO with 0.21 ml of 

either 20 μg (in ddH2O) of recombinant IFNγ (rIFNγ) (Prospec, Rehovot, Israel) or 0.21 

ml ddH2O. 

 

Brain Extraction and Sectioning 

The animals were euthanatized with ketamine/xylazine mix, 75 mg/kg and 7.5 mg/kg 

respectively, intraperitoneal (i.p.) at 3, 24, 48, 51, 72 and 96 h post-MCAO, and perfused 

transcardially with 0.9% saline followed by 4% paraformaldehyde in phosphate buffer. 
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The brains were harvested, post fixed in 4% paraformaldehyde, and immersed in 20% 

followed by 30% sucrose in phosphate buffered saline (PBS). Brains were frozen and 

sliced into 30 μm sections with a cryostat. Coronal brain sections were taken at six 

points from 1.7 to -3.3 mm from Bregma. Sections were either thaw mounted on glass 

slides or placed in Walter’s Anti-freeze cryopreservative and stored at -20°C.  

 

Fluoro-Jade Staining 

Slides were stained with Fluoro-Jade, which labels degenerating neurons.  This method 

was adapted from that originally developed by Schmued et al. (Schmued et al. 1997) 

and has been described by Duckworth et al. (Duckworth et al. 2005).  Slides were dried, 

placed in 100% ethanol for 3 min, 70% ethanol for 1 min, and then ddH2O for 1 min. 

Slides were oxidized using a 0.06% KMnO4 solution for 15 min followed by three 1 min 

rinses with ddH2O.  Slides were stained in a 0.001% solution of Fluoro-Jade (Histochem, 

Jefferson, AR) in 0.1% acetic acid for 30 min.  Slides were rinsed 4 times with ddH2O for 

3 min, allowed to dry at 45oC for 20 min, cleared with xylene and then cover slipped with 

DPX mounting medium (Electron Microscopy Sciences, Ft. Washington, PA).  

 

Infarct Volume Quantification  

Fluoro-Jade stained tissue was digitally photographed with Zeiss Axioskop2 (Carl Zeiss 

INC, Thornwood, NY) microscope controlled by Openlab software (Improvision, 

Waltham, MA) at a magnification of 1x. Area of neurodegeneration was measured using 

the NIH ImageJ software. The area of the contralateral side of the brain was also 

measured and used to compensate for possible edema in the ipsilateral hemisphere. 

Infarct volumes were then calculated by the total area of ipsilateral staining divided by 

the total contralateral area for a given animal. Infarct quantification was only done at    
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96 h post-MCAO because this has been shown to be the time point at which the infarct 

is stable (Newcomb et al. 2006).  

 

Immunohistochemistry in the Brain  

The slides were dried at 45oC for 1 h then rinsed with PBS pH 7.4. Endogenous 

peroxidase activity was extinguished by incubating the slides for 20 min in 3% hydrogen 

peroxide. Slides were placed in permeabilization buffer containing 10% serum, 3% 1M 

lysine, and 0.3% Triton X-100 in PBS for 1 h at room temperature. Next, sections were 

incubated overnight at 4°C in a primary antibody solution (PBS with 2% serum and 0.3% 

Triton X-100) in a humidified chamber. Slides were subsequently washed with PBS and 

incubated with a secondary antibody solution (PBS, 2% serum, 0.3% Triton X-100) for   

1 h. For staining with metal-enhanced 3, 3’-diaminobenzidine (DAB) visualization 

sections were washed in PBS (3 x 5 min) following secondary antibody solution and 

incubated in an avidin/biotin/horseradish peroxidase complex (Vectastain Elite ABC kit; 

Vector Laboratories, Burlingame, CA) for 1 h at room temperature. Sections were 

washed in PBS, and DAB (Pierce, Rockford, IL) was used for color development. Slides 

were washed thoroughly with PBS and dried for 1 h at 45°C then dehydrated, rinsed with 

xylene and cover slipped using DPX (Electron Microscopy Sciences).  

For fluorescence staining, the same procedure was followed up to the incubation with 

the secondary antibody, though sections were not incubated in hydrogen peroxide. 

Slides were washed with PBS after secondary incubation and then cover slipped using 

Vectashield hard set mounting media with DAPI (Vector Laboratories). Slides were 

protected from light during these steps. Double-labeled immunohistochemistry, for IFNγ 

and immune cell surface markers, was achieved by co-incubating the slides with 
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primary antibodies raised in two distinct species, followed by co-incubation with 

secondary antibodies conjugated to distinct fluorophores. 

The following primary antibodies were used:  goat anti-rat IFNγ (1:200; R&D Systems, 

Minneapolis, MN), mouse anti-rat CD3 for T cells (1:2,000; BD Biosciences, San Jose, 

CA), mouse anti-rat CD161 for NK cells (1:1,000; Serotec, Raleigh, NC), mouse anti-rat 

CD45R for B cells (1:5,000; BD Biosciences), and mouse anti-rat CD11b for 

microglia/macrophages (1:3,000; Serotec). Horse anti-goat biotinylated antibody (1:300; 

Vector Laboratories) and Alexa-Fluor® 594 rabbit anti-goat (1:300; Invitrogen, Carlsbad, 

CA) secondary antibodies were used with the IFNγ antibody. Alexa-Fluor® 488 rabbit 

anti-mouse (1:300; Invitrogen) secondary was used in conjunction with all other 

antibodies noted above. 

 

IFNγ Immunohistochemistry in the Spleen  

Spleens were fixed in 4% paraformaldehyde overnight. The spleens were then placed in 

a solution of 20% glycerol and 2% dimethyl sulfoxide (DMSO) and embedded in a 

gelatin matrix using MultiBrain Technology© (NeuroScience Associates, Knoxville, TN). 

The block of spleens was rapidly frozen in isopentane with crushed dry ice (-70°C). 

Using a microtome the block was sliced into 25 µm sections. Six consecutive sections 

were taken and collected in Antigen Preservation solution (50% ethylene glycol, 49% 

PBS pH 7.0, 1% polyvinyl pyrrolidone). The spleen sections were stained free floating in 

Tris-buffered saline (TBS) solutions. Endogenous peroxide activity was extinguished by 

treatment with 3% hydrogen peroxide for 15 min. After washing with TBS sections were 

incubated for 30 min in permeabilization buffer (TBS with 0.3% TritonX-100 and 10% 

rabbit serum). Following permeabilization, slides were incubated overnight at room 

temperature with primary antibody in TBS with 2% rabbit serum. The sections were 
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rinsed with TBS and incubated in secondary biotinylated antibody in TBS with 2% rabbit 

serum for 1 h. After being rinsed with TBS, sections were incubated with an 

avidin/biotin/horseradish peroxidase complex (Vectastain Elite ABC kit) for 1 h. Staining 

was visualized with DAB (Sigma-Aldrich, St. Louis, MO). The sections were then 

mounted on gelatinized slides, dried, dehydrated, cleared with xylene, and cover slipped 

with Permount (Fischer Scientific, Pittsburg, PA). The primary antibody used was goat 

anti-rat IFNγ (1:1,500; R&D Systems,) and the secondary antibody was biotinylated 

rabbit anti-goat (1:256; Vector Laboratories,). 

 

IFNγ Immunohistochemistry Quantification  

IFNγ stained tissue sections were digitally photographed with Zeiss Axioskop2 (Carl 

Zeiss INC, Thornwood, NY) microscope controlled by Openlab software (Improvision, 

Waltham, MA) at a 10x magnification. One image from each Bregma point was taken for 

a total of six images per brain. The area selected for quantification was from the peri-

infarct region of the ipsilateral hemisphere for all animals. The images were analyzed for 

percent of immunostaining per area with ImageJ software. These six values were then 

averaged for each brain.  

Splenic images were taken with a Nikon 90i microscope using a 20x objective and NIS 

Elements BR 2.30 software at a high resolution. The images were processed and 

analyzed with Photoshop CS5 (Adobe Systems Inc., San Jose, CA). The intensity of the 

staining was measured in the histogram for the entire image and the amount of staining 

per image was analyzed. Six sections per spleen were analyzed for each rat. 
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Neuronal Cultures  

Cortices from E18 rat embryos were dissociated with a solution of 0.25% trypsin/2.21mM 

EDTA for 10 min at 37°C. The solution was triturated to obtain a uniform single cell 

suspension. Then 40 ml of DMEM (Mediatech, Manassas, VA) was added and the 

solution was allowed to settle. The supernatant was transferred to a fresh conical tube 

and centrifuged at 1000 rpm for 10 min. The supernatant was aspirated off, the pellet 

was re-suspended in DMEM and the solution was allowed to settle. The debris from the 

bottom was removed with a pipette and the solution was centrifuged for 10 min at 1000 

rpm. The supernatant was aspirated off and the cells were re-suspended in DMEM. 

Trypan blue exclusion was used to count viable cells and 3x105 cells in a final volume of 

1 ml were plated in 24 well poly-L-lysine treated culture plates. Twenty-four hours later 

the media was changed to neurobasal complete (neurobasal media (Invitrogen), B-27 

(Invitrogen), 0.05 mM L-glutamine (Mediatech)) for seven days. After a media change, 

the cells were used for oxygen glucose deprivation (OGD) experiments.  

 

Mixed Glial Cultures  

A 2.21mM EDTA solution containing 0.25% trypsin was used to dissociate cortices from 

P3 rat pups. The suspension was triturated and pelleted. The pellet was re-suspended in 

DMEM+, which consisted of DMEM (Mediatech), 2.5% fetal bovine serum, 10% horse 

serum, and 1% antibiotic/antimycotic (Mediatech). After Trypan Blue exclusion to assess 

cell viability, cells were seeded at a concentration of 1.5x107 cells in 75 cm2 poly-L-lysine 

treated tissue culture flasks. The following day the media was changed to fresh DMEM+ 

and the cultures were incubated at 37°C for 8 days (Gottschall et al. 1995; Rowe et al. 

2010). 
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Oligodendrocyte Purification  

To separate the microglia cell fraction from the OL/astrocyte monolayer, flasks were 

mechanically shaken for 1 h and the media was discarded. Fresh DMEM+ was added to 

the flasks and incubated for 2 days at 37°C. Following the 2 day incubation, the flasks 

were mechanically shaken for 18 h to remove the astrocytes from the OLs and microglia. 

The media was collected and cells were pelleted and re-suspended in fresh DMEM+. 

Trypan Blue exclusion was used to count the viable cells. The media containing OLs and 

microglia was added to 10 cm plastic tissue culture dishes at a concentration of 107 

cells/dish and incubated for 15 min at 37°C. This was repeated three times to assure 

microglial adherence to the plastic. Following the final incubation the dishes were gently 

agitated and the media was removed. The cells were pelleted, re-suspended in DMEM+, 

and plated on poly-L-lysine treated glass coverslips at a concentration of 3x105 

cells/coverslip (McCarthy and de Vellis 1980). After 24 h the media was changed to 

neurobasal complete with 10 ng/ml of platelet derived growth factor-AA (PDGF-AA) 

(Barres et al. 1993; Yang et al. 2005) and the OLs were allowed to proliferate for 7 days. 

Afterwards, the PDGF-AA was withdrawn for 5 days allowing the OLs to progress to the 

mature phenotype (Yang et al. 2005). All experiments were conducted on cultures 

following the 5 day PDGF-AA withdrawal and all cultures used for experiments were 

95% pure OLs (Hall et al. 2009b; Rowe et al. 2010). 

 

Oxygen Glucose Deprivation and rIFNγ Administration  

Mature OLs that were seeded on glass coverslips in 6 well culture plates were subjected 

to 24 h of OGD. Neurons that were seeded in 24 well culture plates were subjected to 

either OGD or normoxia for 24 h. OGD conditions were induced using DMEM without 

glucose and placing the cultures in an air tight chamber that was flushed with hypoxic 
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gas (95% N2, 4% CO2, and 1% O2; Airgas, Tampa, Fl) for 15 min and sealed for 24 h at 

37°C. Cultures exposed to normoxia were incubated in DMEM with glucose in a 

standard tissue culture incubator for 24 h at 37°C. The two groups were further divided 

into cultures that received 20 ng/ml of rIFNγ or vehicle just prior to the   24 h OGD or 

normoxic conditions. The concentration of 20 ng/ml of rIFNγ was previously shown to kill 

immature oligodendrocytes but not mature OLs (Horiuchi et al. 2006).  

 

Lactate Dehydrogenase Assay  

The amount of neuronal and OL cell death was determined using a lactate 

dehydrogenase (LDH) assay (Takara Bio, Inc, Madison, WI). Following 24 h of OGD or 

normoxia, the culture media was removed and centrifuged. Then 100 µl of media was 

added to 100 µl of LDH reagent and incubated in a 96 well plate for 30 min at room 

temperature protected from light. The plate was then read at 548 nm on the μQuant 

platereader (Bio-tek, Winooski, VT). 

 

Statistical Analysis  

All data are expressed as group mean ± SEM. Significance of the data was determined 

by ANOVA with a Dunnet’s post hoc test for IFNγ immuno-staining in the brain and 

neuronal culture survival.  Following ANOVA, a Bonferroni’s post hoc test was used for 

the rIFNγ splenectomy treatment groups. A Tukey’s post-hoc test was used following 

ANOVA to determine significance for the splenic IFNγ protein levels. A two tailed t-test 

was used to for OL survival in culture. A value of p<0.05 was considered significant. All 

sections were blinded prior being analyzed by an investigator. 
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Results 

IFNγ Levels are Increased in the Brain following MCAO  

To determine if IFNγ is present in the brain following MCAO, its expression in the infarct 

was characterized over time. To quantify IFNγ levels, immunohistochemistry for IFNγ 

was performed on brain sections from sham operated animals and from animals 

euthanized at 3, 24, 48, 72, and 96 h following MCAO. IFNγ protein levels were 

significantly increased at 72 h (p<0.01) and remained elevated at 96 h (p<0.05) 

compared to sham operated rats 96 h after surgery (Fig. 1). Immunohistochemistry was 

also performed on brain sections from rats that received splenectomy two weeks prior to 

MCAO and were euthanized at 72 and 96 h post-MCAO. Splenectomy decreased IFNγ 

protein levels down to those not significantly different from sham MCAO at both 72 and 

96 h post-MCAO. Additionally splenectomy reduces IFNγ protein levels significantly at 72 

h compared to 72 h post-MCAO only and as well as at 96 h when compared to 96 h 

post-MCAO only. 

 

IFNγ Protein Levels in the Spleen are Elevated at 24 h following MCAO  

Splenic production of IFNγ was measured by immunohistochemical analysis of the 

spleen. IFNγ protein levels were significantly elevated at 24 h post-MCAO  compared to 

48, 72, and 96 h post-MCAO, and also elevated compared to the sham-operated rats at 

48 and 96 h after surgery (p<0.0002). Naïve spleens showed very low levels of IFNγ 

protein expression (Fig. 2). 

 

IFNγ Expression by T Cells, NK Cells, and B Cells in and around the Infarct 

Immunostaining for IFNγ was abundant in the infarct of rat brains at 96 h post-MCAO 

(Fig. 3A). Double staining with antibodies against immune cell markers and IFNγ showed 
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co-localization of CD3 (T cells) (Fig. 3B), CD161 (NK cells) (Fig. 3C), and CD45R (B 

cells) (Fig. 3D) with IFNγ. These results indicate T cells, NK cells and B cells were 

producing IFNγ in and around the infarct. CD11b positive cells did not co-localize with 

IFNγ staining cells, indicating that microglia/macrophages were not producing IFNγ (Fig. 

3E).   

 

T cells, B cells, NK cells, and Microglia/Macrophages are Present in the Ipsilateral 

Hemisphere following MCAO  

Antibodies directed against immune cell surface markers showed that T cells (CD3), NK 

cells (CD161), B cells (CD45R), and microglia/macrophages (CD11b) are localized in 

the infarcted area of the ipsilateral hemisphere 96 h following MCAO (Fig. 4A-D). In 

splenectomized rats, there was a decrease in the immunostaining for T cells, NK cells, 

and B cells in the injured hemisphere (Fig. 4E-G). Microglia/macrophages in the infarct 

declined in the ipsilateral hemisphere of splenectomized rats (Fig. 4H).  In 

splenectomized rats the predominant form of microglia/macrophages appear with an 

amoeboid morphology but these cells still display evident ramifications in the damaged 

area. Only microglia in the resting, ramified morphology were present in the contralateral 

hemispheres (Fig. 4I-L).  

 

Administration of rIFNγ following MCAO Abolishes the Protective Effect of 

Splenectomy  

IFNγ production originating from the spleen could contribute to delayed neural death and 

explain why splenectomy prior to MCAO is neuroprotective. To test this, rats underwent 

splenectomy or sham-splenectomy two weeks prior to MCAO. Animals were then 

administered rIFNγ (20 μg/rat i.v.) or ddH2O at 48 and 72 h post-MCAO. Infarct volumes, 
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as measured by Fluoro-Jade staining, at 96 h post-MCAO showed splenectomized rats 

that received systemic rIFNγ had infarcts that were significantly greater than 

splenectomized vehicle rats (p<0.0001). The splenectomized rIFNγ rats had infarcts that 

were not significantly different from either of the sham-splenectomized rat groups (Fig. 

5E). There was an average of 5% infarct in the splenectomy vehicle brain sections (Fig. 

5C), compared to the average infarcts of (50-70%) for all other treatment groups (Figs. 

5A, 5B, and 5D). 

 

Recombinant IFNγ Increases IFNγ Expression in the Infarct of Splenectomized 

Rats 

Immunohistochemical analysis for IFNγ in the brain was performed to determine the 

effect of rIFNγ administration on levels of this cytokine in the infarct. IFNγ expression 

was significantly decreased in the infarct of splenectomized-vehicle rats (Fig. 6C) 

(p<0.02) compared to all other groups (Fig. 6E). The addition of rIFNγ to splenectomized 

rats (Fig. 6D) increased IFNγ protein levels in the infarct to levels found in rats which 

underwent sham-splenectomy prior to MCAO (Fig. 6A and B).   

 

Recombinant IFNγ is Not Cytotoxic to Cultured Primary Neurons or OLs  

To determine if rIFNγ is directly toxic to neural cells, cultured neurons and OLs were 

treated with rIFNγ prior to OGD. Cell death as measured with LDH assays show that 

treatment with rIFNγ does not directly enhance death of neurons (Fig. 7A) in culture 

under normoxic or OGD conditions. Recombinant IFNγ does not increase the death of 

cultured OLs (Fig. 7B) exposed OGD conditions. Representative images of primary 

neuronal (Fig. 7C) and primary OL cultures (Fig. 7D) prior to experimentation are 

provided. 
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Discussion 

The spleen is a key component in the immune response to ischemic injury of the brain 

and other organs (Okuaki et al. 1996; Savas et al. 2003; Jiang et al. 2007).   

Splenectomy is protective in models of ischemic (Ajmo et al. 2008), hemorrhagic (Lee et 

al. 2008), and severe traumatic brain injury (Li et al. 2011). Together, these studies 

suggest there is a splenic response that exacerbates neural injury by initiating a delayed 

inflammatory response.  

 

Notably, IFNγ perpetuates the pro-inflammatory response by promoting Th1 cell 

differentiation while inhibiting Th2 cell differentiation.  Additionally, it is known to activate 

numerous immune cell types including microglia/macrophages, NK cells, B cells, and T 

cells, as well as vascular endothelial cells. Furthermore, this pro-inflammatory cytokine 

also influences antibody isotype production, up regulates both major histocompatibility 

complexes (MHC I and MHC II), induces changes in vascular endothelial cell adhesion, 

and increases the production of reactive oxygen species (Boehm et al. 1997).  These 

actions are detrimental to the survival of compromised neural cells. In particular the 

enhanced Th1 response seen with IFNγ has been found to be detrimental in ischemic 

brain injuries.  A Th1 response to brain antigens has been shown in animal  studies to 

result in a more severe injury (Becker et al. 2005) and is a poor prognostic factor 

regardless of stroke severity in people (Becker et al. 2011).   

 

Experimental data suggest that IFNγ plays an important role in exacerbating neural 

injury, as IFNγ knockout mice show reduced infarct volume following transient MCAO 

(Yilmaz et al. 2006). In contrast, a different study demonstrated that there was no 
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difference in infarct volume between IFNγ knockout and wild type mice following MCAO 

(Lambertsen et al. 2004). However, this latter study used a different model of MCAO 

from the one used in the Yilmaz study. Increased serum levels of IFNγ have been 

detected in mice 24 h following MCAO (Liesz et al. 2009a).  

 

In stroke patients IFNγ production was reduced 6 h following symptom onset. However, 

IFNγ expression returns to levels not significantly different than healthy controls 72 h 

following symptom onset. In these patients, IFNγ was being produced by the innate cells 

of the immune system, specifically γδT cells, NK cells, and natural killer T (NKT) cells 

(Peterfalvi et al. 2009). Both animal and human studies provide strong support for IFNγ 

and the innate immune system response in the progression of tissue damage in 

ischemic brain injury.  

 

Splenic IFNγ protein levels were elevated at 24 h post-MCAO and decrease by 48 h. The 

spike of IFNγ found in the spleen of the rats suggests it is being produced by innate 

immune cells, in particular NK cells as they are a major source innate IFNγ (Boehm et al. 

1997). This transient spike in IFNγ protein expression in the spleen at 24 h is consistent 

with rises in IFNγ mRNA in the spleens of mice 22 h following transient MCAO (Hurn et 

al. 2007).  

 

Our results indicated an increase in IFNγ protein expression in the injured brain at 72 h 

post-MCAO, with expression remaining elevated at 96 h. These results are consistent 

with studies examining IFNγ mRNA levels in the brain following MCAO. For example, Li 

et al. (2001) demonstrated that IFNγ mRNA increased in the infarct at 2 days post-

MCAO and remained elevated 6 days following MCAO (Li et al. 2001). Other reports 
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have shown that IFNγ mRNA levels were decreased in the mouse brain at 22 h following 

MCAO (Offner et al. 2006). An experiment by Liesz et al. (2011) in which mice were 

administered an antibody directed against CD49d (VLA-4) 24 h prior to transient MCAO 

provides further support for delayed IFNγ production in the brain.  Trafficking of T and 

NK cells into the brain was decreased in the CD49d antibody treated mice compared to 

control mice. In the same experiment there was also a decrease in the amount of IFNγ 

mRNA at 72 h post-MCAO in the antibody treated mice compared to the control mice 

(Liesz et al. 2011). This experiment suggests that T cells and NK cells are a source of 

IFNγ in the brain at later time points following MCAO which is also consistent with our 

findings. 

 

The increase in IFNγ expression in the brain at 72 h post-MCAO coincides with the time 

point at which microglia/macrophages become maximally activated in the brain 

(Leonardo et al. 2010). As IFNγ is a potent activator of microglia/macrophages, the delay 

in the activation of these cells in the brain suggests that splenic IFNγ is acting through 

other immune cells to elicit this delayed effect to the infarct. A direct systemic IFNγ 

response from the spleen would be expected to cause a more immediate response. 

Therefore, it is more likely that IFNγ production in the spleen acts on target cells within 

the spleen and these cells then migrate to other immune organs to interact with other 

cell types. These cells could then infiltrate the brain stimulating the 

microglia/macrophages to degrade the infarcted area in the brain. As T cells and NK 

cells have been found in the peri-infarct region producing IFNγ 96 h following MCAO, the 

likely sequence of events starts with an initial increase in IFNγ in the spleen leading to 

delayed neural injury. 

 



www.manaraa.com

55 
 

Our results suggest the neuroprotection resulting from splenectomy is caused by the 

loss of IFNγ. Systemic administration of rIFNγ to splenectomized rats resulted in infarct 

volumes that were not different from sham-splenectomized rats, suggesting that spleen 

derived IFNγ is responsible for the delayed expansion of the penumbra.  Interestingly, 

sham-splenectomized rats that received rIFNγ did not have larger infarcts than sham-

splenectomized rat that received vehicle. This finding suggests the endogenous IFNγ 

response from the spleen is enough to cause maximal delayed neural damage following 

a stroke. 

 

Splenectomy reduced the amount of IFNγ protein in the brain following MCAO and 

administration of rIFNγ restores IFNγ production in the brains of splenectomized animals 

to levels seen in sham-splenectomized rats. Additionally IFNγ expression was not 

significantly higher in the brains of sham-splenectomy rats that received rIFNγ compared 

to rats that received vehicle treatment. This observation provides evidence that the IFNγ 

from the spleen has a relationship to the IFNγ produced in the brain following MCAO. 

Whether this is a direct (systemic) or indirect (cellular) relationship is yet to be 

determined.  

 

As previously reported, splenectomy reduced the number of Isolectin IB4 and 

myeloperoxidase (MPO) positive cells, activated microglia/macrophages and neutrophils 

respectively, in the infarcted hemisphere 96 h post-MCAO (Ajmo et al. 2008). 

Splenectomy reduces the number of peripheral immune cells, specifically T cells, B cells, 

and NK cells, in the ipsilateral hemisphere and alters the morphology of 

microglia/macrophages responding to the injury at 96 h following MCAO. A majority of 

the microglia in the splenectomized rats appear in transitional state with amoeboid-like 
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cell body with ramifications, not the completely amoeboid morphology observed in 

MCAO only rats at 96 h. As IFNγ activates microglia/macrophages, the lack of this 

cytokine would maintain these cells towards a resting state. Therefore, blocking splenic 

IFNγ could prove to be a therapeutic option in modulating the immune response 

following ischemic stroke. 

 

Experiments with rIFNγ were performed on cell cultures to ensure that the increase in 

infarct volume in the splenectomy-rIFNγ group was due to activation of the immune 

system and not the result of the rIFNγ being directly cytotoxic to neural cells. A previous 

study demonstrated that IFNγ is not cytotoxic to primary mature OLs at 20 ng/ml 

(Horiuchi et al. 2006). This concentration was used to treat primary neural cell cultures 

under normoxic and OGD conditions. Recombinant IFNγ is not directly cytotoxic to 

cultured neurons or OLs demonstrating that other cells through activation by IFNγ, like 

microglia, are eliciting their cytotoxic effect. This contention is further supported by (Bal-

Price and Brown 2001) who showed that IFNγ added to mixed brain cell cultures results 

in neuronal cell death. The neurotoxic effects of IFNγ appear to be mediated through the 

activation of microglia/macrophages. 

 

From these various experiments, blocking IFNγ from facilitating a pro-inflammatory 

response to ischemic stroke is a potential way to reduce injury. Selectively blocking IFNγ 

signaling will allow for targeting one facet of the immune response, leaving the anti-

inflammatory or pro-regenerative facets able to respond to the injury. 
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Figure 1:  IFNγ levels increase in the injured brain post-MCAO. IFNγ 

immunohistochemistry of brain tissue from sham operated animals, animals that 

received splenectomies two weeks prior to MCAO and were euthanized at 72 and 96 h 

post-MCAO, and animals 3, 24, 48, 72, and 96 h post-MCAO. IFNγ protein levels were 

significantly higher at 72 and 96 h compared to sham operated animals and animals that 

received splenectomy prior to MCAO at 72 and 96 h post-MCAO (* p<0.01; # p<0.05). 

For each group n ≥ 3. Box in brain graphic depicts area used for quantification of IFN γ 

levels. Sham denotes a sham MCAO and Spl denotes rats that underwent splenectomy 

prior to MCAO. 
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Figure 2:  Splenic IFNγ production is elevated at 24 h post-MCAO. Spleens from 

animals 24, 48, 72, 96 h post-MCAO along with naïve, 48 and 96 h sham-MCAO were 

assayed using immunohistochemistry for IFNγ. IFNγ protein levels were found to be 

significantly elevated 24 h post-MCAO (* p<0.0002) compared to the other groups. 
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Figure 3:  IFNγ expression in immune cells in the brain post MCAO. Representative 

brain sections from rats 96 h post-MCAO were stained with IFNγ and immune cell 

surface markers to identify what types of cells are expressing IFNγ in the infarct and peri-

infarct. Micrographs show IFNγ (red) (A), and double staining merged images of IFNγ 

(red) with CD3 (green) for T cells (B), CD161 (green) for natural killer cells (C), and 

CD45R (green) for B cells (D); yellow cells with white arrows indicate areas of co-

localization. A micrograph of staining with CD11b (green) for microglia/macrophages and 

IFNγ (red) (E) demonstrate a lack of co-localization of CD11b and IFNγ. In figure e, 

arrow heads indicate IFNγ positive cells and yellow arrows indicate CD11b positive cells. 

Scale bars = 20 μm. Box in brain graphics depicts the regions where images were taken 

for a given micrograph. 
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Figure 4:  Differences in immune cell infiltrates in the brain following with 

splenectomy. T cells, B cells, NK cells, and microglia/macrophages are present in the 

ipsilateral hemisphere following MCAO. At 96 h post-MCAO immunohistochemistry for 

immune cell surface markers shows peripheral immune cells are present in the 

ipsilateral hemisphere. Micrographs show CD3 positive cells (T cells) (A), CD161 

positive cells (NK cells) (B), CD45R positive cells (B cells) (C), and CD11b positive cells 

(microglia/macrophages) (D) in the infarcted hemisphere. Micrographs from 

splenectomized rats demonstrate a decrease in immunostaining for T cells (E), NK cells 

(F), B cells (G), and microglia/macrophages (H) in the ipsilateral hemisphere. However 

in the contralateral hemisphere there is an absence of staining for T cells (I), NK cells 

(J), and B cells (K). Only microglia/macrophages were detected in the contralateral 

hemispheres (L). Inserts provide representative images of the morphological states of 

the microglia/macrophages present in each group and show an amoeboid cell (D), an 

amoeboid cell with evident ramifications (H), and a ramified cell (L). Scale bars = 100 

µm. The scale bar of the inserts = 20 µm. Box in brain graphics depicts the regions 

where images were taken for a given micrograph. 



www.manaraa.com

66 
 

 

 

Figure 5:  Recombinant IFNγ increases neural injury following MCAO in 

splenectomized rats. Recombinant IFNγ increases infarct volume in splenectomized 

rats at 96 h post-MCAO to levels not different from sham-splenectomized rats. Infarct 

volumes were measured as a percentage of the contralateral hemisphere with Fluoro-

Jade staining. Graph depicts average infarct volumes for each group at 96 h post-MCAO 

(E). The splenectomy-vehicle treated rats had significantly lower infarcts than the other 

treatment groups (* p<0.0001). The splenectomy-IFNγ treated rats had infarcts that were 

not significantly different from the sham-splenectomy groups. Representative images for 

each treatment group at 96 h post-MCAO:  sham-splenectomy-vehicle (SS-V) n=4 (A), 

sham-splenectomy-rIFNγ (SS-IFNγ) n=6 (B), splenectomy-vehicle (S-V) n=4 (C), and 

splenectomy-rIFNγ (S-IFNγ) n=6 (D). Scale bars = 2 mm. 
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Figure 6:  Recombinant IFNγ increases IFNγ expression in the infarct of 

splenectomized rats. The graph shows splenectomy results in a significant decrease in 

IFNγ protein expression at   96 h post-MCAO (* p<0.02) (E). However rats that received 

splenectomy and rIFNγ had IFNγ protein levels not significantly different than the rats 

which underwent sham-splenectomy prior to MCAO. Representative images from each 

treatment group at 96 h following MCAO: sham-splenectomy-vehicle (SS-V) (A), sham-

splenectomy-rIFNγ (SS-IFNγ) (B), splenectomy-vehicle (S-V) (C), and splenectomy-rIFNγ 

(S-IFNγ) (D). Box in brain graphics depicts the regions where images were taken for a 

given micrograph. 
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Figure 7:  Recombinant IFNγ is not cytotoxic to cultured primary neurons or OLs. 

Primary neuronal and OL cultures were treated with 20 ng/ml of rIFNγ under normoxic 

and OGD for 24 h. Recombinant IFNγ does not increase the amount of cell death, as 

measured by LDH, in neuronal cultures under normoxic or OGD conditions for 24 h (A). 

Oligodendrocytes subjected to 24 h of OGD and rIFNγ did not have significantly different 

survival rates (B). Representative images depict neuronal (C) and OL (D) cultures prior 

to treatment. Scale bars = 30 µm. 
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Note to Reader 

Portions of this section have been previously published (Seifert et al. 2012a) and are 

utilized with permission of the publisher. 

 

Abstract 

The splenic response to stroke is a proinflammatory reaction to ischemic injury resulting 

in expanded neurodegeneration. Splenectomy reduces neural injury in rodent models of 

hemorrhagic and ischemic stroke, however the exact nature of this response has yet to 

be fully understood. This study examines the migration of splenocytes after brain 

ischemia utilizing carboxyfluorescein diacetate succinimidyl ester (CFSE) to label them 

in vivo. The spleen was found to significantly decrease in size from 24 to 48 h following 
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middle cerebral artery occlusion (MCAO) in rats compared to sham operated controls. 

By 96 h post-MCAO the spleen size returned to levels not different from sham operated 

rats. To track splenocyte migration following MCAO, spleens were injected with CFSE to 

label cells. CFSE positive cell numbers were significantly reduced in the 48 h MCAO 

group versus 48 h sham and CFSE labeled cells were equivalent in 96 h MCAO and 

sham groups. A significant increase of labeled lymphocyte, monocytes, and neutrophils 

was detected in the blood at 48 h post-MCAO when compared to the other groups. 

CFSE labeled cells migrated to the brain following MCAO but appear to remain within 

the vasculature. These cells were identified as natural killer cells (NK) and monocytes at 

48 h and at 96 h post-MCAO NK cells, T cells and monocytes. At 96 h post-MCAO 

CFSE labeled cells are producing interferon gamma. Splenocytes are released from the 

spleen following ischemic brain injury, enter into systemic circulation and migrate to the 

brain exacerbating neural injury.  

 

Introduction 

Stroke is a complex neural injury that progresses through several phases following the 

initial insult. The peripheral immune system plays a delayed role in the progression of 

neural injury following stroke. The presence of peripheral immune cells in the brain 

following ischemic stroke has been well documented in animal studies (Schroeter et al. 

1994; Stevens et al. 2002). The role that these cells play in the progression of neural 

injury following stroke is still being investigated, as the origin of these cells is not clearly 

understood. Recent evidence indicates that the spleen is at least one of the sources of 

these immune cells.  
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The spleen is a large reservoir of immune cells and red blood cells. Its removal reduces 

neurodegeneration in a variety of brain injury models (Ajmo et al. 2008; Lee et al. 2008; 

Li et al. 2011; Das et al. 2011).  Moreover, splenectomy decreases cellular death 

following ischemic-reperfusion injury in other organs, including the liver (Okuaki et al. 

1996), intestines (Savas et al. 2003), kidney (Jiang et al. 2007), and heart (Leuschner et 

al. 2010). Splenectomy also decreases the number of immune cells in the brain (Ajmo et 

al. 2008; Seifert et al. 2012) following middle cerebral artery occlusion (MCAO). 

Additional studies have shown that preventing peripheral immune cell infiltration is 

neuroprotective following MCAO. Antibodies generated against cellular adhesion 

molecules  prevent immune cell extravasation into the brain and decrease infarct volume 

(Chopp et al. 1996; Kanemoto et al. 2002; Liesz et al. 2011). Cytokine production within 

the brain following MCAO is also decreased with splenectomy (Seifert et al. 2012). 

These studies illustrate that the spleen is a focal point for the immune response to tissue 

injury. 

 

In addition to peripheral immune cells being present in the ischemic brain they produce 

and secrete proinflammatory cytokines while in the brain. Several cytokines and 

chemokines have up regulated mRNA expression in the brain following transient MCAO 

in mice. (Chang et al. 2011; Hurn et al. 2007; Offner et al. 2006a) Elevated levels of 

interferon gamma (IFNγ) protein have been found in the brain following permanent 

MCAO in rats (Seifert et al. 2012). Additionally, intracerebroventricular injection of 

antibodies directed against either tumor necrosis factor alpha (TNFα) or IFNγ following 

MCAO decreased infarct volume (Liesz et al. 2009). These data demonstrate that the 

presence of peripheral immune cells is detrimental following stroke, whether these cells 

are acting through a cellular cytotoxic mechanism or through the secretion of 
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proinflammatory cytokines and chemokines. Elucidating the source of these cells should 

provide some insight into the mechanisms by which these cells elicit a proinflammatory 

response following ischemic brain injury.  

 

This study aims to determine temporal changes in splenic mass in rats following MCAO 

to determine if splenic contraction leads to an increase in circulating splenocytes. It has 

been well documented that there are peripheral immune cells present in the brain hours 

to days following MCAO (Stevens et al. 2002), however the origin of these cells remains 

to be elucidated. The spleen contributes to the proinflammatory response following 

MCAO and is a major reservoir of immune cells. Using carboxyfluorescein diacetate 

succinimidyl ester (CFSE), a fluorescent molecule that covalently binds to intracellular 

proteins, allowed splenocytes to be tracked in this study. CFSE is used in lymphocyte 

trafficking studies in vivo (Weston and Parish 1990) and can be detected for up to 8-10 

cell divisions (Lyons 2000). It has also been shown to be detected out to 20 days in 

transplanted hepatocytes (Karrer et al. 1992). This suggests CFSE is a stable molecule 

that allows cells to be tracked using fluorescence. By labeling splenocytes in vivo with 

CFSE prior to MCAO, splenocyte migration was tracked following MCAO. 

 

Materials and Methods 

Animal Care 

All animal procedures were conducted in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals with a protocol approved by the Institutional Animal Care 

and Use Committee at the University of South Florida. Male Sprague-Dawley rats (300-

350g) were used for the in vivo experiments. All rats were purchased from Harlan Labs 

(Indianapolis, IN), maintained on a 12 h light/dark cycle (6 am – 6 pm) and given access 

to food and water ad libitum. 
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Splenic CFSE Injections 

Splenic CFSE injections were performed five days prior to MCAO by making a midline 

skin incision at the caudal terminus of the 13th rib on the anatomical left. The abdominal 

wall was opened along midline and the spleen was externalized through the incision with 

blunt forceps. The spleens were injected with 250µl of a 4mg/ml solution of CFSE 

(Molecular Probes, Eugene, OR) in dimethyl sulfoxide (DMSO). The injections were 

evenly spaced out in five sites of 50µl per site along the spleen. The spleen was then 

reinserted into the abdominal cavity. The incision was then closed with sutures, first 

closing the abdominal cavity and then the skin incision. To obtain baseline CFSE 

labeling, a group of CFSE only rats were euthanized five days following the splenic 

injections; at the same time point the other groups underwent MCAO or sham surgeries. 

 

Laser Doppler Blood Flow Measurement  

Laser Doppler was used to monitor blood perfusion (Moor Instruments Ltd, Devon, 

England). A hole was drilled 1 mm posterior and 4 mm lateral from Bregma, and a guide 

screw was placed. The laser doppler probe was inserted into the guide screw, and the 

tip of the probe was placed against the surface of the brain. Rats that did not show ≥ 

60% reduction in perfusion during MCAO were excluded from this study (Ajmo et al. 

2006; Ajmo et al. 2008; Hall et al. 2009). Sham operated rats had the guide screw and 

laser doppler probe placed and blood flow was monitored to ensure that there was not a 

drop in cerebral blood flow during the sham procedure. 

 

Permanent Middle Cerebral Artery Occlusion 

MCAO surgery was performed using the intraluminal method originally described by 

Longa et al. (Longa et al. 1989) and previously reported (Ajmo et al. 2006; Ajmo et al. 
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2008; Hall et al. 2009). Briefly, rats were anesthetized. Then blunt dissection was 

performed to isolate the common carotid artery, the internal carotid artery (ICA), and the 

external carotid artery (ECA). A 40 mm monofilament was introduced into the ECA, fed 

distally into the ICA, and advanced to the origin of the MCA. The filament was tied off on 

the ECA to produce a permanent occlusion. The incision was then sutured closed and 

the rat was allowed to wake in a fresh cage. Sham operations were performed for the 

CFSE rats at 48 and 96 h post-MCAO to ensure there no confounding factors from the 

CFSE injections. 

 

Tissue Extraction and Sectioning  

The animals were euthanatized with ketamine/xylazine mix, 75 mg/kg and 7.5 mg/kg 

respectively, intraperitoneal (i.p.) at 3, 24, 48, 51, 72 and 96 h post-MCAO, and perfused 

transcardially with 0.9% saline followed by 4% paraformaldehyde in phosphate buffer 

(PB). The spleens and thymi were removed prior to perfusion. Spleens were weighed 

immediately following removal and were subsequently placed in RPMI complete (RPMI-

1640 without Phenol Red media (Cellgro, Manassas, VA), antibiotic/antimycotic 

(Cellgro), 29.2 mg/ml L-glutamine, low IgG FBS (Cellgro), and 14.2M 2-

mercaptoethanol) cell culture media. The thymi were placed in 4% paraformaldehyde in 

PB. Thymi were subsequently sliced into 16µm sections with a cryostat and thaw 

mounted on glass slides. The brains were harvested, post fixed in 4% 

paraformaldehyde, and immersed in 20% followed by 30% sucrose in phosphate 

buffered saline (PBS). Brains were frozen and sliced into 30 μm sections with a cryostat. 

Coronal sections were taken at six points from 1.7 to -3.3 mm from Bregma. Sections 

were either thaw mounted on glass slides or placed in Walter’s Anti-freeze 

cryopreservative and stored at -20°C. All tissue processing was done under limited 

lighting to protect the CFSE dye. 
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Fluoro-Jade Staining  

Brain sections mounted on glass slides were stained with Fluoro-Jade, which labels 

degenerating neurons.  This method was adapted from that originally developed by 

Schmued et al. (Schmued et al. 1997) and has been described by Duckworth et al. 

(Duckworth et al. 2005).  Slides were dried, placed in 100% ethanol for 3 min, 70% 

ethanol for 1 min, and then ddH2O for 1 min. Slides were oxidized using a 0.06% KMnO4 

solution for 15 min followed by three 1 min rinses with ddH2O.  Slides were stained in a 

0.001% solution of Fluoro-Jade (Histochem, Jefferson, AR) in 0.1% acetic acid in the 

dark for 30 min.  Slides were rinsed 4 times with ddH2O for 3 min each time, allowed to 

dry at 45°C for 20 min, cleared with xylene and then cover slipped with DPX mounting 

medium (Electron Microscopy Sciences, Ft. Washington, PA).  

 

Infarct Quantification 

Fluoro-Jade stained tissue was digitally photographed with Zeiss Axioskop2 (Carl Zeiss 

Inc, Thornwood, NY) microscope controlled by Openlab software (Improvision, Waltham, 

MA) at a magnification of 1x. Area of neurodegeneration was measured using the NIH 

ImageJ software. To compensate for possible edema in the ipsilateral hemisphere, the 

area of the contralateral hemisphere was also measured. Infarct volumes were then 

calculated by the total area of ipsilateral staining divided by the total contralateral area 

for a given animal. Infarct quantification was done for all animals.  

 

Immunohistochemistry  

The slides were dried at 45oC for 1 h then rinsed with PBS pH 7.4. Endogenous 

peroxidase activity was extinguished by incubating the slides for 20 min in 3% hydrogen 

peroxide. Slides were placed in permeabilization buffer containing 10% serum, 3% 1M 



www.manaraa.com

76 
 

lysine, and 0.3% Triton X-100 in PBS for 1 h at room temperature. Next, sections were 

incubated overnight at 4°C in a primary antibody solution (PBS with 2% serum and 0.3% 

Triton X-100) in a humidified chamber. Slides were subsequently washed with PBS and 

incubated with a secondary antibody solution (PBS, 2% serum, 0.3% Triton X-100) for 1 

h. For staining with metal-enhanced 3, 3’-diaminobenzidine (DAB) visualization sections 

were washed in PBS (3 x 5 min) following secondary antibody solution and incubated in 

an avidin/biotin/horseradish peroxidase complex (Vectastain Elite ABC kit; Vector 

Laboratories, Burlingame, CA) for 1 h at room temperature. Sections were washed in 

PBS, and DAB (Pierce, Rockford, IL) was used for color development. Slides were 

washed thoroughly with PBS and dried for 1 h at 45°C then dehydrated, rinsed with 

xylene and cover slipped using DPX. 

 

For fluorescence staining, the same procedure was followed up to the incubation with 

the fluorescently labeled secondary antibody, though sections were not incubated in 

hydrogen peroxide. Slides were washed with PBS after secondary incubation, dried, 

rinsed in xylene, and then cover slipped using DPX. Slides were protected from light 

during these steps. Double-labeled immunohistochemistry, for CFSE and immune cell 

surface markers or IFNγ was achieved by incubating the slides with primary 

antibodies, followed by incubation with secondary antibodies conjugated to 594nm 

fluorophores as CFSE fluoresces at 488nm. 

 

The following primary antibodies were used:  goat anti-rat IFNγ (1:200; R&D Systems, 

Minneapolis, MN), mouse anti-rat CD3 for T cells (1:2,000; BD Biosciences, San Jose, 

CA), mouse anti-rat CD161 for NK cells (1:1,000; Serotec, Raleigh, NC), and mouse 

anti-rat CD11b for microglia/macrophages (1:3,000; Serotec). Anti-fluorescein antibodies 
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were used to detect the presence of any CFSE molecules:  Alexa-Fluor® 488 goat-anti 

fluorescein (1:1,000; Invitrogen, Carlsbad, CA) and biotinylated rabbit anti-fluorescein 

(1:3,000; Invitrogen). Alexa-Fluor® 594 rabbit anti-mouse (1:300; Invitrogen) secondary 

was used in conjunction the immune cell surface markers. Alexa-Fluor® 594 goat anti-

rabbit (1:300; Invitrogen) were used as secondary antibodies for IFNγ. 

 

Image Capture 

Tissue sections that were double labeled were viewed on the Leica SP2 confocal 

microscope (Leica Microsystems, Buffalo Grove, IL). Images were taken at a 

magnification of 63x. Each fluorophore was scanned sequentially and then the two 

images were merged.   

   

Splenic Cell Counts 

Fresh spleens from the CFSE injected rats were removed prior to perfusion, weighed, 

and placed in RPMI complete in stomacher bags. The spleens were disassociated and 

strained with a 70µm filter into a 50 ml conical. The volume of the conical was brought 

up to 40 ml. The cells were pelleted by centrifuging at 1500rpm for 5 min. The 

supernatant was discarded and the cells were resuspended in 5 ml of ACK lysis buffer 

(0.15M NH4Cl, 1M KHCO3, 0.1M Na2EDTA in water pH equaled 7.4) for 5 min. The 

volume was adjusted to 40 ml with RPMI complete and then centrifuged at 1500rpm for 

5 min. The supernatant was discarded and the cells were resuspended in 30 ml RPMI 

complete. Cells were counted using Trypan Blue exclusion of dead cells. Additionally, 

40µl of the solution was placed on a slide and cover slipped with a 22mm circular cover 

slip (380mm2), three slides were used per spleen to obtain CFSE cell counts for each 

spleen. Using a reticle with a 10x10 grid (1mm2 area with 10x objective using Zeiss 

AxioSkop2 microscope, Carl Zeiss Inc) cells were counted in three different areas on 
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each cover slip. A total number of CFSE positive cells and total number of cells for each 

area was recorded and then the nine total counts for each rat were averaged to give 

total number of CFSE positive cells and the percentage stained with CFSE for each time 

point.  

 

Giemsa Staining and Analysis 

Giemsa staining was used to identify the immune cell types within circulation following 

MCAO. Blood samples were obtained using cardiac puncture at the time of euthanasia. 

Blood smears were made on by placing a small drop of blood on a non-charged slide. All 

slides were air dried then fixed with methanol for 5 min. For Giemsa staining slides were 

washed with distilled water three times for 2 min. The slides were then submerged in 

Giemsa (Sigma-Aldrich, St. Louis, MO) stain for 4 min. The reaction was stopped by 

adding distilled water. To remove excess staining an additional three washes with 

distilled water were performed for 3 min each. Slides were then dried overnight and 

cover slipped with DPX mounting media. These slides were then used to count the total 

number of CFSE positive cells on the slide and identify these cells, as well as get a 

leukocyte count for each animal. 

 

The total number of CFSE cells was determined by counting the number of cells on the 

total slide, two slides per animal. The cells were also indentified using the Giemsa 

staining. Additionally leukocytes were counted by indentifying 100 cells per slide, two 

slides per animal.  

 

Statistical Analysis  

All data are expressed as group mean ± SEM. Significance of the data was determined 

by ANOVA with a Dunnet’s post hoc test for the spleen weights and the CFSE cells in 
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the blood. A Tukey’s post hoc test was used for the CFSE cells in the spleen. A value of 

p<0.05 was considered significant. All sections were blinded prior being analyzed by an 

investigator. 

 

The Spleen Transiently Decreases in Size following MCAO in Rats 

Results 

Spleens were weighed at different time points following MCAO. Spleen weights were 

measured at 3, 24, 48, 51, 72, and 96 h post-MCAO and sham procedure. Previously we 

have demonstrated 96 h post-MCAO as the time point at which the infarct is stable in 

this permanent model of MCAO (Newcomb et al. 2006). The spleen was found to 

significantly decrease in size at 24, 48, and 51 h following MCAO compared to sham 

operated animals (p<0.05). However, spleen weights were not significantly different from 

sham controls at 3, 72 and 96 h post-MCAO (Fig 8).  

 

CFSE is a Safe and Effective Method to Label and Track Splenocytes in vivo 

To track splenocyte migration following MCAO, rat spleens were injected with CFSE to 

label splenocytes in vivo. None of the animals injected appeared ill or died (data not 

shown). To determine if the presence of CFSE adversely affected splenic cells, Trypan 

blue exclusion was utilized to assess cell viability. There was no difference in the 

number of live splenocytes at any of the time points tested (Fig 9A). Additionally CFSE 

labeled approximately 20 percent of splenocytes by five days (Fig 9B). The CFSE 

injections did not alter infarct volume (data not shown).  
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Changes in the Number of CFSE Positive Cells within the Spleen following MCAO 

The CFSE only group received splenic injections of CFSE and was euthanized five days 

later, the time point at which the remaining groups received sham or MCAO surgery. The 

total number of CFSE positive splenocytes was decreased in the 48 h MCAO group 

compared to the 48 h sham and the CFSE only groups  (p<0.0001; Fig 10). No 

differences were detected between the 96 h MCAO and sham groups. 

 

MCAO Induces Changes in Circulating Leucocytes and CFSE Positive Cells 

Circulating CFSE positive cells were identified by using blood smears and the cell types 

were determined using Giemsa staining. When blood smears from all the different 

groups were compared, an overall increase in CFSE positive cells was observed in 

circulation 48 h following MCAO (p<0.0007). This increase resulted in an increase in 

circulating lymphocytes (p<0.005), neutrophils (p<0.0005), and monocytes (p<0.02). 

Giemsa staining revealed a significant increase in lymphocytes at 48 h post-MCAO and 

in the 96 h sham and MCAO groups (p<0.001). Neutrophils were significantly increased 

in the 48 h MCAO and 96 h sham groups (p<0.001). In contrast, monocytes were 

significantly decreased in all groups compared to the CFSE only (p<0.0001) (Table 1).  

 

CFSE Cells Migrate to the Brain post-MCAO 

CFSE labeled cells were present in the brains in the ipsilateral hemisphere of animals 

that underwent the MCAO procedure only and not in the sham operated animals (Fig 

11A and D). The cells were mainly located in the striatum of the injured brain at 48 and 

96 h post-MCAO (Fig 11B and E). Upon higher magnification cells remained within the 

cerebral vascular, not extravasating into the brain parenchyma (Fig 11C and F).  
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Identification of CFSE Positive Cells in the Brain following MCAO 

To identify the types of CFSE labeled cells in the brain following MCAO, double labeling 

with staining for immune cell surface markers was employed. The double labeling 

demonstrated the presence of CFSE positive monocytes (CD11b) and NK cells (CD161) 

at 48 h post-MCAO (Fig 12A and B). At 96 h following MCAO monocytes, NK cells and T 

cells (CD3) were present (Fig 12C-E). There were not any CFSE positive T cells in the 

brains of animals 48 h post-MCAO (data not shown). 

 

IFNγ Production by CFSE Labeled Cells in the Brain 

Since IFNγ is a potent inflammatory cytokine, IFNγ production by CFSE cells was 

assessed. Double labeling for IFNγ was performed on brain sections to determine if any 

of the CFSE positive cells were expressing this cytokine. IFNγ staining co-localized with 

CFSE at 96 h post-MCAO (Fig 13) but not at 48 h following MCAO (data not shown).  

 

Discussion 

The spleen is a highly proinflammatory organ following ischemic brain injuries (Ajmo et 

al. 2008; Lee et al. 2008; Li et al. 2011; Das et al. 2011) as well as ischemic liver 

(Okuaki et al. 1996), intestine (Savas et al. 2003), kidney (Jiang et al. 2007), and heart 

(Leuschner et al. 2010) injury. In animal studies splenectomy reduces injury in all of 

these organs. The spleen uses both a cellular and humoral response to tissue injuries. 

The humoral response has been characterized following stroke since there are many 

reports citing the splenic production of inflammatory cytokines and chemokines after this 

type of brain injury. These cytokines include increased IFNγ protein following MCAO in 

rats (Seifert et al. 2012). Increased cytokine mRNA for interleukin 1 beta (IL-1β) 
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(Schwarting et al. 2008; Lee et al. 2008), TNFα (Lee et al. 2008; Schwarting et al. 2008; 

Hurn et al. 2007), IFNγ (Hurn et al. 2007), and IL-6 (Hurn et al. 2007; Lee et al. 2008) 

have been found in mice or rats following ischemic or hemorrhagic stroke. Chemokine 

mRNA for CXCL2 and CXCL10 have been found to be elevated following MCAO in mice 

(Offner et al. 2006a; Hurn et al. 2007). The cellular response has not been characterized 

as well as the humoral response following stroke. There are some data in a mouse 

model of transient MCAO (Offner et al. 2006b). However, cellular tracking has not been 

utilized following stroke. 

 

Other investigators have found that the spleen decreases in size following transient 

MCAO in mice and that this decrease in spleen size is due to apoptosis of the cells and 

a loss of functional centers within the spleen (Offner et al. 2006b). In rats, permanent 

MCAO results in a transient decrease in spleen size from 24-72 h post-MCAO. This 

effect is the result of a catecholamine surge following MCAO (Meyer et al. 2004) which 

activates α1-adrenergic receptors on the splenic capsule causing a contraction of the 

smooth muscles in the capsule. This leads to the transient decrease in splenic size 

observed in rats. Blocking the α1-adrenergic receptors with prazosin or carvedilol 

prevents the decrease in spleen size seen at 48 h following MCAO (Ajmo et al. 2009) 

while carvedilol is also neuroprotective (Savitz et al. 2000; Ajmo et al. 2009). Contraction 

of the splenic smooth muscle is associated with an increase in circulating white blood 

cells and erythrocytes (Bakovic et al. 2005). The splenocytes which are released into 

circulation following MCAO could account for the peripheral immune cells found in the 

brain after stroke. While there are differences between Offner et al. (2006) and the 

current findings this could be due the different species used in the studies, mice versus 

rats, or the type of stroke surgery performed in each, transient MCAO versus permanent 
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MCAO. Further investigations into how the spleen reacts to ischemic strokes in patients 

will help elucidate the role the spleen plays in stroke pathogenesis. 

 

The spleen responds to MCAO induced injury differently than injury associated with a 

sham surgery. Sham operated rats at 48 h post-surgery have CFSE positive cell 

populations within the spleen not different than CFSE only rats.  MCAO rats in both the 

48 h and 96 h groups and those in the 96 h sham group all have significantly decreased 

CFSE positive cell populations within the spleen compared to CFSE only and 48 h sham 

groups. This indicates that the brain injury induces a different splenic response, as 

CFSE labeled cells are decreased in the spleen at 48 h post-MCAO compared to the 48 

h sham operated group. The significant increase in circulating cells seen at 48 h post-

MCAO demonstrates the injury to the brain induces splenocyte migration. Another study 

also found a decrease in splenocyte counts at 48 h post-MCAO compared to sham 

operated rats (Gendron et al. 2002). However, the sham operation induces a delayed 

splenic response as there is not a significant difference in the number of CFSE positive 

cells within the spleen at 96 h in the sham or MCAO treated groups. This indicates that 

the spleen does have a delayed response to a general insult like a sham operation. The 

splenic response to the sham operation at 96 h is also supported by the similar 

increases in circulating lymphocytes in both the 96 h MCAO and the 96 h sham groups.  

 

Interestingly, while the spleen is decreased in size 48 h following MCAO, there is a 

significant increase in the number of circulating CFSE positive cells, regardless of 

immune cell type. The total number of circulating monocytes is decreased in all 

treatment groups compared to the CFSE only group, which was used as a CFSE 

injection control group. While the total number of circulating monocytes is decreased at 

48 h there was a significant increase in CFSE positive monocytes demonstrating most of 



www.manaraa.com

84 
 

the monocytes in circulation following MCAO at 48 h are from the spleen. This is also 

consistent with evidence that there is a population of undifferentiated monocytes in the 

spleen that are released into circulation and travel to the heart following myocardial 

infarction in mice (Swirski et al. 2009). In a transient mouse MCAO model an increase in 

circulating monocytes was observed at 96 h following MCAO (Offner et al. 2006b), which 

is inconsistent with the data presented in this study. The differences again could be due 

to the different models of MCAO and species used for each study. Additionally, few 

CFSE positive cells were found in the thymus (data not shown). 

 

Circulating CFSE positive cells were found only in the brains of MCAO treated rats at 48 

and 96 h following MCAO. There were no CFSE positive cells in the brains of sham-

operated rats at any time point. These CFSE positive cells were identified as NK cells 

and monocytes at 48 h following MCAO, while at 96 h post-MCAO T cells were also 

present. The cells appear to be localized to the blood vessels. While there is clear 

documentation of the presence of immune cells within the infarct following MCAO 

(Stevens et al. 2002), it does not appear that the majority of these cells are of splenic 

origin. The types of immune cells found in the brain are consistent with the time course 

for different immune cell populations to appear within the brain following stroke (Stevens 

et al. 2002). Following the temporal pattern of immune cell infiltration 48 h post-MCAO, 

there was the presence of monocytes and a lack of CFSE positive T cells. Additionally, 

the presence of both T cells and monocytes 96 h post-MCAO is consistent with the 

infiltration of these cells, as T cells are found later as part of the delayed adaptive 

immune response (Stevens et al. 2002). The presence of these cells is known to 

exacerbate delayed neural injury following stroke and removal of the spleen decreases 

the number of peripheral immune cells that enter the brain (Ajmo et al. 2008; Seifert et 

al. 2012). Therefore, if splenocytes are not entering the brain parenchyma, but 
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enhancing the pro-inflammatory response to the injured neural tissue, then the cells 

might be secreting inflammatory mediators. These inflammatory cytokines or 

chemokines could be the method by which splenocytes are detrimental following stroke 

versus being directly cytotoxic to neural cells. Secretion of proinflammatory cytokines 

which activate microglia/macrophages at the site of injury would be detrimental to the 

survival of neural cells following stroke. 

 

One highly proinflammatory cytokine that activates microglia/macrophages, IFNγ, is 

elevated in brains of rats post-MCAO (Seifert et al. 2012). Additionally, there is an 

increase in IFNγ mRNA days following stroke in mice (Li et al. 2001), and blocking IFNγ 

using neutralizing antibodies injected directly into the brain at 72 h post-MCAO is 

neuroprotective (Liesz et al. 2009). At 96 h post-MCAO, CFSE positive cells were 

producing IFNγ, which is consistent with the cell types that have been documented in the 

brain 96 h following MCAO (Stevens et al. 2002). This production of IFNγ could 

subsequently activate microglia/macrophages in a proinflammatory manner contributing 

to increased neural injury. These data are consistent with the time when 

microglia/macrophages become maximally activated following MCAO (Leonardo et al. 

2010). While IFNγ producing cells were not found at 48 h following MCAO, there are 

several other cytokines that could be produced by the cell types present early following a 

stroke. Possible early proinflammatory mediators include IL-12, IL-8, IL-18, and CXCL2. 

IL-12 and IL-18 are strong inducers of IFNγ synthesis by T cells and NK cells (Schroder 

et al. 2004). While IL-8 and CXCL2 are highly chemotaxic and both are up regulated 

following MCAO (Newman et al. 2005; Hurn et al. 2007; Offner et al. 2006a). Expression 

of any or all of these molecules would increase neural injury following stroke. 
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This set of experiments has identified the cellular splenic response following permanent 

MCAO in rats using CFSE as a way to track immune cell migration following MCAO. 

There is a transient decrease in splenic size, likely mediated by catecholaminergic 

activity following stroke. This decrease in spleen size is associated with an increase in 

circulating splenocytes which migrate to the brain and secrete the proinflammatory 

cytokine IFNγ. This production of IFNγ coincides with the time when 

microglia/macrophages are becoming maximally activated and have the ability to create 

delayed neural injury. These data provide some insight into the mechanism by which the 

spleen is detrimental in ischemic brain injuries and why splenectomy is neuroprotective 

in these types of injuries. Further investigation into the splenic reaction in stroke patients 

would provide insight into how the peripheral immune system can be modulated 

following stroke to improve neurological outcomes.  
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Figure 8:  The spleen transiently decreases in size following MCAO in rats. Mean 

spleen weights plotted over time following MCAO. Spleen weights were significantly 

decreased by the 24, 48, and 51 h time points compared to sham operated controls (* 

p<0.05). Spleen weights were not significantly different from sham operated controls at 

the 3, 72, and 96 h time points. 
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Figure 9:  CFSE is a safe and effective method to label splenocytes in vivo. When 

CFSE is injected directly into the spleen, it is not cytotoxic. CFSE was found to be safe 

when used out to nine days following the initial injections (96 h post-MCAO) (A). Five 

days following splenic injection of CFSE an average of 20% of splenocytes were CFSE 

positive (B). The CFSE only group received splenic CFSE injections and was euthanized 

5 days post injection, the same time point at which the other groups underwent MCAO or 

sham surgery.   
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Figure 10:  The number of CFSE positive cells within the spleen decreases 

following MCAO. The total number of CFSE positive splenocytes was increased in the 

48 h sham MCAO group compared to all the other groups except the CFSE only group (* 

p<0.0001). 
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Figure 11:  CFSE cells migrate to the brain post-MCAO. Micrographs A, B and C are 

from 48 h following surgery showing representative sections from sham (10X), MCAO 

(10X) and MCAO (40X), respectively.  Micrographs D, E and F are from 96 h following 

surgery showing representative sections from sham (10X), MCAO (10X) and MCAO 

(40X), respectively.  CFSE labeled splenocytes are present in brain sections from the 

rats that underwent MCAO and reside primarily in blood vessels. Scale bars for A, B, D, 

and E = 100µm. Scale bars in C and F = 50µm. 
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Figure 12:  Identification of CFSE positive cells in the brain following MCAO. Brain 

sections from CFSE treated rats at 48 and 96 h post-MCAO were immunostained with 

antibodies that recognize CD161 (NK cell), CD11b (monocytes), and CD3 (T cell). 

CD161 expression co-localized with CFSE labeled cells at 48 h (A) and 96 h (C). CD11b 

co-localized with CFSE labeled cells at 48 h (B) and 96 h (D). CD3 immunoreactivity was 

only detected with CFSE at 96 h (F). Arrows indicate double labeled cells. Scale bars = 

50µm.  
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Figure 13:  IFNγ production by CFSE positive cells in the brain. Brain sections from 

a CFSE injected rat at 96 h post-MCAO were immunostained with antibodies that 

recognize IFNγ. Antibodies directed against IFNγ co-localized with CFSE labeled cells at 

96 h. Arrow indicates area of co-localization of labeling. Scale bars = 50µm. 
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Table 1:  CFSE positive cells significantly increase in the blood at 48 h in MCAO 
operated rats. 

 

 

In 48 h post MCAO operated rats, CFSE positive cells were significantly increased in the 

blood compared to all other groups (* p<0.0007).  With Giemsa staining there was a 

significant decrease in monocytes in the blood in all treatment groups compared to 

CFSE only. There was an increase in lymphocytes in all surgery groups but was only 

significant in the 48 h MCAO, 96 h sham and MCAO groups. Additionally there was an 

increase in neutrophils in all groups that was only significant in the 48 h MCAO and 96 h 

sham groups (* p ≤ 0.02).   

 a CFSE only rats were euthanized at 5 days post injection, this is the same time point all 

other groups underwent MCAO or sham surgery.  
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Abstract 

The delayed immune response to stroke is responsible for the increased neural injury 

that continues to occur after the initial ischemic event. This delayed immune response 

has been linked to the spleen, as splenectomy prior to middle cerebral artery occlusion 

(MCAO) is neuroprotective. Previous studies have shown that the inflammatory cytokine 

interferon gamma (IFNγ) is linked to the splenic response enhancing neural injury 

following MCAO. Presence of IFNγ activates the expression of the inflammatory 

interferon-inducible protein 10 (IP-10). This study was designed to determine if IP-10 via 

IFNγ signaling is up regulated in the brain and spleen following MCAO. Expression of IP-

10 was found to increase in the brain and the spleen following MCAO.  In an attempt to 
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block IFNγ signaling and increases in IP-10 antibodies recognizing IFNγ where 

administered. IFNγ neutralizing antibody administration reduced the levels of IP-10 in the 

brain but not in the spleen. T cell infiltration was reduced in the MCAO-damaged brains 

of the IFNγ antibody treated animals relative to ones receiving isotype antibodies. 

Neutralizing IFNγ interferes with the pro-inflammatory cascade that involves IP-10 and 

the recruitment of T cells to the brain following ischemic stroke. 

    

Introduction 

The spleen has been shown to be largely responsible for the peripheral immune 

response which increases neural injury after ischemic stroke. The spleen is a large 

reservoir for immune cells and splenectomy prior to middle cerebral artery occlusion 

(MCAO) is neuroprotective in rats (Ajmo et al. 2008) and mice (Jin et al. 2013). 

Interferon gamma (IFNγ) is a pro-inflammatory cytokine that relays the splenic response 

to MCAO. IFNγ levels increase in the brain 72 h post MCAO in rats (Seifert et al. 2012b) 

and mice (Jin et al. 2013). Splenectomy decreases the elevated levels of IFNγ in brain 

following MCAO (Seifert et al. 2012b; Jin et al. 2013). Additionally, splenocytes have 

been tracked in vivo following MCAO and these cells migrate to the injured brain (Seifert 

et al. 2012a). Splenic IFNγ levels spike 24 h post MCAO (Seifert et al. 2012b) suggesting 

the spleen plays a detrimental role following stroke through IFNγ. 

 

It has been well documented that IFNγ increases following experimental stroke (Offner et 

al. 2006; Hurn et al. 2007; Seifert et al. 2012b; Jin et al. 2013) and that blocking it is 

neuroprotective (Liesz et al. 2009; Liesz et al. 2011; Yilmaz et al. 2006). Therefore, 

interfering with IFNγ signaling should result in decreased infarct volume and reduced 
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inflammation following stroke. This delayed increase in IFNγ protein in the brain following 

MCAO indicates that this inflammatory cytokine is a relevant therapeutic target. 

Downstream signaling of IFNγ  induces the expression of the chemokine interferon-

inducible protein 10 (IP-10), also known as CXCL10. IP-10 is a pro-inflammatory 

chemokine that selectively drives the propagation of the Th1 response by interacting with 

CXCR3 receptor (Loetscher et al. 2001). Microglia/macrophages produce IP-10 in 

response to IFNγ stimulation (Luster 2002) and IP-10 cause the chemotaxis of Th1 cells 

to the site of injury. In addition, IP-10 can prevent the activation of Th2 cells by 

competitive antagonism of the CCR3 receptor  (Loetscher et al. 2001). This interaction of 

IP-10 with CXCR3 and CCR3 creates a pro-inflammatory feed forward mechanism 

recruiting more IFNγ producing cells to the site of injury, leading to more IFNγ production 

which in turn leads to more IP-10 production. 

 

Studies on IP-10 in experimental stroke show that IP-10 mRNA is up regulated early in 

the brain at 6 and 22 h following MCAO in mice. In the spleen IP-10 mRNA levels are 

increased at 22 h post MCAO in mice (Offner et al. 2006; Hurn et al. 2007). Protein 

levels of IP-10 have not been quantified in the brain or spleen following MCAO or at 

longer time points after MCAO. Further investigation into the role of IP-10 following brain 

ischemia will elucidate the IFNγ/T cell response in stroke.  

 

This study was designed to determine if IP-10 protein levels are significantly elevated in 

the brain and the spleen following MCAO. Previous studies have demonstrated 

increased levels of IFNγ, the main inducer of IP-10 synthesis, in the brain (Seifert et al. 

2012b; Jin et al. 2013) and the spleen post MCAO (Seifert et al. 2012b). A neutralizing 

antibody directed against IFNγ was administered starting 24 h following MCAO to 
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determine if delayed systemic blocking of IFNγ would result in reduced neural injury. IP-

10 levels were also measured in the spleen and the brain. T cell recruitment to the brain 

was also investigated as IP-10 is a chemoattractant for Th1 cells. Blocking IFNγ will 

provide insight into the entire IFNγ, IP-10, T cell recruitment inflammatory loop following 

stroke.    

 

Methods and Materials 

Animal Care 

All animal procedures were conducted in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals with a protocol approved by the Institutional Animal Care 

and Use Committee at the University of South Florida. Male Sprague-Dawley rats (300-

350g) were used for the following experiments. All rats were purchased from Harlan 

Labs (Indianapolis, IN), maintained on a 12 h light/dark cycle (6 am – 6 pm) and given 

access to food and water ad libitum. 

 

Laser Doppler Blood Flow Measurement  

Laser Doppler was used to monitor blood perfusion (Moor Instruments Ltd, Devon, 

England). A hole was drilled 1 mm posterior and 4 mm lateral from Bregma, and a guide 

screw was placed. The laser doppler probe was inserted into the guide screw, and the 

tip of the probe was placed against the surface of the brain. Rats that did not show ≥ 

60% reduction in perfusion during MCAO were excluded from this study (Ajmo et al. 

2006; Ajmo et al. 2008; Hall et al. 2009). Sham operated rats had the guide screw and 

laser doppler probe placed and blood flow was monitored to ensure that there was not a 

drop in cerebral blood flow during the sham procedure. 
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Permanent Middle Cerebral Artery Occlusion 

MCAO surgery was performed using the intraluminal method originally described by 

Longa et al. (Longa et al. 1989) and previously reported (Ajmo et al. 2006; Ajmo et al. 

2008; Hall et al. 2009). Briefly, rats were anesthetized. Blunt dissection was 

performed to isolate the common carotid artery, the internal carotid artery (ICA), and the 

external carotid artery (ECA). The ECA was ligated and cut. Then a 40 mm 

monofilament was introduced into the ECA, fed distally into the ICA, and advanced to the 

origin of the MCA. The filament was tied off on the ECA to produce a permanent 

occlusion. The incision was then sutured closed and the rat was allowed to wake in a 

fresh cage.  

 

Treatment Injections 

A goat anti-rat polyclonal IFNγ neutralizing antibody (R&D Systems, Minneapolis, MN) 

and a goat IgG isotype antibody (R&D Systems) were reconstituted with phosphate 

buffered saline (PBS) to a concentration of 100 µg/ml.  Animals in the antibody treatment 

study were randomly assigned to one of three treatment groups: IFNγ neutralizing 

antibody, IgG isotype control or the PBS control. Beginning at 24 h post MCAO animals 

were administered either 5 µg (0.05 ml) of a goat anti-rat IFNγ neutralizing antibody, a 

goat IgG isotype control, or an equivalent amount of PBS via an intraperitoneal (i.p.) 

injection. Treatment was administered at 24, 48, and 72 h post MCAO. 

 

Tissue Extraction and Sectioning  

The animals were euthanatized with a ketamine/xylazine mix, 75 mg/kg and 7.5 mg/kg 

respectively, i.p. at 24, 48, 72 or 96 h post-MCAO for the time course experiment and at 

96 h post-MCAO for the antibody treatment experiment. Anesthetized animals were then 
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perfused transcardially with 0.9% saline followed by 4% paraformaldehyde in phosphate 

buffer (PB). The spleen and thymus were removed prior to perfusion. Spleens were 

weighed immediately following removal and were subsequently snap frozen and stored 

in the -80°C freezer with the thymi. The brains were harvested, post fixed in 4% 

paraformaldehyde, and immersed in 20% followed by 30% sucrose in PBS. Brains were 

frozen and sliced into 30 μm sections using a cryostat. Coronal sections were taken at 

six points from 1.7 to -3.3 mm from Bregma. Sections were either thaw mounted on 

glass slides or placed in Walter’s Anti-freeze cryopreservative and stored at -20°C.  

 

Fluoro-Jade Staining  

Brain sections mounted on glass slides were stained with Fluoro-Jade, which labels 

degenerating neurons. This method was adapted from that originally developed by 

Schmued et al. (Schmued et al. 1997) and has been described by Duckworth et al. 

(Duckworth et al. 2005).  Slides were dried at room temperature overnight, placed in 

100% ethanol for 3 min, 70% ethanol for 1 min, and then ddH2O for 1 min. Slides were 

oxidized using a 0.06% KMnO4 solution for 15 min followed by three 1 min rinses with 

ddH2O.  Slides were stained in a 0.001% solution of Fluoro-Jade (Histochem, Jefferson, 

AR) in 0.1% acetic acid in the dark for 30 min.  Slides then were rinsed 4 times with 

ddH2O for 3 min each time, allowed to dry at 45°C for 20 min, cleared twice with xylene 

and then cover slipped with DPX mounting medium (Electron Microscopy Sciences, Ft. 

Washington, PA).  

 

Infarct Quantification 

Fluoro-Jade stained tissue was digitally photographed with Zeiss Axioskop2 (Carl Zeiss 

Inc, Thornwood, NY) microscope controlled by Openlab software (Improvision, Waltham, 
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MA) at a magnification of 1x. Area of neurodegeneration was measured using the NIH 

ImageJ software. The area of the contralateral hemisphere was also measured and used 

to compensate for possible edema in the ipsilateral hemisphere. Infarct volumes were 

then calculated by the total area of ipsilateral staining divided by the total contralateral 

area for a given animal. Infarct quantification was done for all animals.  

 

Immunohistochemistry in the Brain 

The slides were dried at 45°C for 1 h then rinsed with PBS pH 7.4. Endogenous 

peroxidase activity was extinguished by incubating the slides for 20 min in 3% hydrogen 

peroxide. Slides were placed in permeabilization buffer containing 10% serum, 3% 1M 

lysine, and 0.3% Triton X-100 in PBS for 1 h at room temperature. Next, sections were 

incubated overnight at 4°C in a primary antibody solution (PBS with 2% serum and 0.3% 

Triton X-100) in a humidified chamber. Slides were subsequently rinsed with PBS and 

incubated with a secondary antibody solution (PBS, 2% serum, 0.3% Triton X-100) for 1 

h. For staining with metal-enhanced 3, 3’-diaminobenzidine (DAB) visualization sections 

were rinsed with PBS following secondary antibody solution and incubated in an 

avidin/biotin/horseradish peroxidase complex (Vectastain Elite ABC kit; Vector 

Laboratories, Burlingame, CA) for 1 h at room temperature. Sections were washed in 

PBS, and DAB (Pierce, Rockford, IL) was used for color development. Slides were 

washed thoroughly with PBS and dried for 1 h at 45°C then dehydrated, rinsed twice 

with xylene and cover slipped using DPX. 

 

For fluorescence staining, the same procedure was followed up to the incubation with 

the fluorescently labeled secondary antibody, though sections were not incubated in 

hydrogen peroxide. Slides were rinsed with PBS after secondary incubation, dried, 
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rinsed twice in xylene, and then cover slipped using DPX. Slides were protected from 

light during these steps. Double-labeled immunohistochemistry, for IP-10 and immune 

cell surface markers was achieved by incubating the slides with primary antibodies, 

followed by incubation with secondary antibodies conjugated to 594nm or 488nm 

fluorophores. 

 

The following primary antibodies were used:  rabbit anti-rat IP-10 (1:5,000; abcam; 

Cambridge, MA), mouse anti-rat CD3 for T cells (1:2,000; BD Biosciences, San Jose, 

CA), and mouse anti-rat CD11b for microglia/macrophages (1:3,000; Serotec). Alexa-

Fluor® 488 goat anti-rabbit (1:300; Invitrogen) secondary was used for all IP-10 staining. 

Alexa-Fluor® 594 goat anti-mouse (1:300; Invitrogen) secondary was used in 

conjunction the immune cell surface markers for double staining with IP-10. Alexa-

Fluor® 488 rabbit anti-mouse (1:300; Invitrogen) secondary was used when only staining 

for CD3 T cell. 

 

IP-10 Immunohistochemistry in the Spleen  

Spleens were fixed in 4% paraformaldehyde overnight. The spleens were then placed in 

a solution of 20% glycerol and 2% dimethyl sulfoxide (DMSO) and embedded in a 

gelatin matrix using MultiBrain Technology© (NeuroScience Associates, Knoxville, TN). 

The block of spleens was rapidly frozen in isopentane with crushed dry ice (-70°C). 

Using a microtome the block was sliced into 25 µm sections. Six consecutive sections 

were taken and collected in Antigen Preservation solution (50% ethylene glycol, 49% 

PBS pH 7.0, 1% polyvinyl pyrrolidone). The spleen sections were stained free floating in 

Tris-buffered saline (TBS) solutions. Endogenous peroxide activity was extinguished by 

treatment with 3% hydrogen peroxide for 15 min. After washing with TBS sections were 

incubated for 30 min in permeabilization buffer (TBS with 0.3% TritonX-100 and 10% 
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rabbit serum). Following permeabilization, slides were incubated overnight at room 

temperature with primary antibody in TBS with 2% rabbit serum. The sections were 

rinsed with TBS and incubated in secondary biotinylated antibody in TBS with 2% rabbit 

serum for 1 h. After being rinsed with TBS, sections were incubated with an 

avidin/biotin/horseradish peroxidase complex (Vectastain Elite ABC kit) for 1 h. Staining 

was visualized with DAB (Sigma-Aldrich, St. Louis, MO). The sections were then 

mounted on gelatinized slides, dried, dehydrated, cleared with xylene, and cover slipped 

with Permount (Fischer Scientific, Pittsburg, PA). The primary antibody used was rabbit 

anti-rat IP-10 (abcam) and the secondary antibody was biotinylated goat anti-rabbit 

(Vector Laboratories,). 

 

IP-10 Immunohistochemistry Quantification  

IP-10 stained tissue sections were digitally photographed with Zeiss Axioskop2 

microscope controlled by Openlab software at a 10x magnification. Three images from 

each of 4 Bregma points (1.7 mm to -1.3 mm) were taken for a total of twelve images per 

brain. The area selected for quantification was the striatum of the ipsilateral hemisphere 

for all animals. The images were analyzed for percent of immunostaining per area with 

ImageJ software. These twelve values were then averaged for each brain.  

Splenic images were taken with a Nikon 90i microscope using a 20x objective and NIS 

Elements BR 2.30 software at a high resolution. The images were processed and 

analyzed with Photoshop CS5 (Adobe Systems Inc., San Jose, CA). The intensity of the 

staining was measured in the histogram for the entire image and the amount of staining 

per image was analyzed. Six sections per spleen were analyzed for each rat. 
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Confocal Image Capture 

Tissue sections that were double labeled were viewed on the Leica SP2 confocal 

microscope (Leica Microsystems, Buffalo Grove, IL). Images were taken at a 

magnification of 63x. Each fluorophore was scanned sequentially and then the two 

images were merged.   

   

Statistical Analysis  

All data are expressed as group mean ± SEM. Significance of the data was determined 

by ANOVA with Fischer’s Least Significant Difference post hoc test for all analysis. A 

value of p<0.05 was considered significant. All sections were blinded prior being 

analyzed by an investigator. 

 

Results 

IP-10 Levels are Elevated in the Brain following MCAO 

To determine if IP-10 protein is expressed in the brain following MCAO, its protein 

expression in the striatum of the ipsilateral hemisphere was characterized over time. To 

quantify IP-10 levels, immunohistochemistry for IP-10 was performed on brain sections 

from animals euthanized at 48, 72, and 96 h following MCAO and naïve or sham 

operated rats. IP-10 protein levels were significantly increased at 72 h and remained 

elevated at 96 h (p<0.01) compared to sham operated rats 96 h after surgery (Fig 14A). 

Micrographs of representative sections from the striatum are depicted for naïve (Fig 

14B), 48 h (Fig 14C), 72 h (Fig 14D), and 96 h post MCAO (Fig 14E). 
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Splenic IP-10 Levels Increase after MCAO and Remain Elevated 

In the spleen IP-10 protein levels were quantified using immunohistochemistry. Spleens 

from animals euthanized 24, 48, 72, and 96 h post MCAO and sham or naïve rats were 

used to perform immunohistochemistry to determine IP-10 protein expression. IP-10 

levels were significantly elevated at 24 h and remained elevated out to 96 h following 

MCAO compared to naïve spleens (p<0.0007). The sham operated animals had 

increased levels of IP-10 but this did not reach statistical significance (Fig 15A). 

Micrographs of representative sections from the spleen are depicted for naïve (Fig 15B), 

sham (Fig 15C), 24 h (Fig 15D), 48 h (Fig 15E), 72 h (Fig 15F), and 96 h post MCAO 

(Fig 15G). 

 

IP-10 Producing Cells in the Brain following MCAO 

IP-10 expression is induced by IFNγ in cells of the monocytic origin. Double staining with 

IP-10 and CD11b, a marker for monocytes, was performed on the brains from animals 

96 h post MCAO. IP-10 and CD11b co-localized in the striatum of the ipsilateral 

hemisphere (Fig 16). This co-localization was determined using confocal microscopy. 

 

IFNγ Neutralizing Antibody Administration Decreases Infarct following MCAO 

To determine if the pro-inflammatory IFNγ signaling pathway contributes to increased 

neural injury following MCAO, an IFNγ neutralizing antibody was administered 24, 48, 

and 72 h post MCAO. Infarct volumes, as measured by Fluoro-Jade staining, were 

significantly decreased in the IFNγ neutralizing antibody group compared to the vehicle 

control (p<0.007). When compared to the IgG control the IFNγ antibody group was 

approaching significance (p=0.0588) (Fig 17). 
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IFNγ Neutralizing Antibody Decreased IP-10 in the Brain 

IP-10 protein expression was quantified in the striatum of the ipsilateral hemisphere of 

the IFNγ antibody, vehicle, and IgG treated rats. The IP-10 immunoreactivity was 

significantly decreased in the IFNγ antibody treatment group compared to the IgG 

isotype and PBS controls (Fig 18D). Representative micrographs from the striatum 

demonstrate IP-10 staining was elevated in the PBS (Fig 18A) and IgG isotype control 

(Fig 18B) groups compared to IP-10 staining in the IFNγ neutralizing antibody treated 

group (Fig 18C). 

 

IP-10 Levels in the Spleen Increase with Antibody Administration 

IP-10 levels were measured in the spleen of animals treated with PBS, IgG isotype, or 

IFNγ neutralizing antibody. Splenic IP-10 immunoreactivity was increased in the both the 

antibody treated groups compared to the PBS treated group (Fig 19D). Representative 

micrographs show reduced IP-10 staining in the spleens of PBS treated animals 

compared to rats receiving an antibody (Fig 19A). IP-10 staining was increased equally 

in the groups of animals that received an IgG (Fig 19B) or IFNγ antibody (Fig 19C). 

 

The Amount of CD3 Immunoreactivity Appears to Decrease in the Brains of IFNγ 

Antibody Treated Animals 

Brain sections from animals that underwent MCAO and then administered an IFNγ 

neutralizing antibody, an IgG isotype antibody, or PBS were stained using an anti CD3 

antibody to visualize the presence of T cells. At 96 h post MCAO the amount of CD3 
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immunostaining in the striatum appeared to be decreased in the IFNγ antibody treated 

group (Fig 20C) compared to the IgG (Fig 20B) and PBS (Fig 20A) control groups. 

 

Discussion 

The spleen reacts to bodily injuries by eliciting an inflammatory response that further 

exacerbates the cellular damage.  Splenectomy is protective in a variety of ischemic 

injuries in other organs including the liver (Okuaki et al. 1996), kidney (Jiang et al. 2007), 

intestines (Savas et al. 2003), and heart (Leuschner et al. 2010). Additionally, removal of 

the spleen is neuroprotective in several types of brain injuries including ischemic stroke 

(Ajmo et al. 2008; Jin et al. 2013), intracerebral hemorrhage (Lee et al. 2008), and 

traumatic brain injury (Li et al. 2011; Das et al. 2011; Walker et al. 2010). Radiation of 

the spleen following MCAO also reduces infarct volume (Zhang 2013). The removal of 

splenocytes either physically with splenectomy or with radiation results in protection from 

ischemic injuries. Splenocytes mediate the expression of inflammatory cytokines and are 

universally detrimental to ischemic injuries in mouse and rat injury models.    

 

In the spleen the levels of IFNγ spike at 24 h post MCAO (Seifert et al. 2012b). This very 

transient increase in IFNγ leads to a prolonged increase in the expression of IP-10 that 

begins at 24 h and remains elevated at least out to 96 h post MCAO. This demonstrates 

the long lasting effects IFNγ can have even when it is present for only a brief period of 

time. IP-10 levels are increased in the sham operated animals but the increase is not as 

high as the animals that underwent MCAO, suggesting the splenic response to a brain 

injury could cause the production of higher levels of IP-10. The elevated levels of IP-10 

at 24 h are consistent with data that found significantly higher mRNA levels of IP-10 in 

the spleen 22 h following stroke in mice (Offner et al. 2006; Hurn et al. 2007). 
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IP-10 levels in the brain parallel the expression pattern of IFNγ where expression does 

not become elevated until 72 h and remain elevated at 96 h post MCAO. These results 

are consistent with a delayed response and up regulation of protein compared to mRNA 

levels. Studies looking at mRNA levels of IP-10 in the brain following MCAO found 

increased mRNA as early as 6 h post MCAO (Offner et al. 2006). As expected, IP-10 

within the infarct is expressed in cells of the monocytic lineage (CD11b+), which probably 

are microglia. IFNγ is known to activate monocytes to produce IP-10 (Boehm et al. 

1997). Studies that inhibited or neutralized IFNγ activity resulted in decreased infarcts. 

The problem with these studies is that none of the methods used to inhibit IFNγ are 

viable treatment options. IFNγ-/- mice had decreased infarct volumes compared to wild 

type mice (Yilmaz et al. 2006). Inhibiting IFNγ with a neutralizing antibody injected 

directly into the brain three days following MCAO decreased infarct volume (Liesz et al. 

2009). Additionally, using an antibody directed at CD49d (very late antigen 4, VLA4) 

prevented immune cells from entering the brain following MCAO leading to decreased 

infarct volume.  This treatment precluded the cells producing IFNγ from entering the 

injured brain. Animals in this study were pretreated with antibody or administration was 

started 3 h post MCAO, not extending the therapeutic window  (Liesz et al. 2011). A 

relevant approach to target IFNγ signaling would be to systemically administer an agent 

directed against IFNγ activity after MCAO. 

 

Systemic administration of an IFNγ neutralizing antibody significantly decreases infarct 

volume when compared to vehicle controls. These results are consistent with previous 

observations where IFNγ was blocked (Yilmaz et al. 2006; Liesz et al. 2009; Liesz et al. 
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2011). Additionally, striatal IP-10 levels in the brain are significantly decreased with IFNγ 

neutralization. The amount of CD3 immunoreactivity appears to be reduced in the 

striatum of theses rats as well. This is expected as IFNγ is known to induce IP-10 

production (Boehm et al. 1997) and IP-10 is a strong chemoattractant for pro-

inflammatory IFNγ producing T cells (Groom and Luster 2011). The infarct volumes for 

the IFNγ neutralizing antibody and the IgG control were approaching significance 

demonstrating that an increase in the sample size is likely required to attain a statistically 

significant level. Moreover, a potentially more effective approach would be to use these 

antibodies in conjunction with pharmaceuticals that block the IFNγ or its downstream 

intracellular signal transduction.  

 

Administration of a goat antibody that is perceived by the immune system as foreign 

resulted in a localized inflammatory response in the spleen. Both groups of rats that 

received a goat antibody had elevated levels of IP-10 compared to the PBS control 

group. IP-10 production can be induced in the presence of high levels of IFNβ or IFNα. 

However, IFNγ is a more potent inducer of IP-10 (Groom and Luster 2011). The reaction 

in the spleen is further evidence that a goat neutralizing antibody may not be the most 

optimal method to inhibit IFNγ or its signaling. As mentioned above, agents exists that 

block IFNγ receptor activation or its signaling. Its signaling is obstructed by Jak1/2 or 

STAT1 inhibitors. There are several Jak1/2 inhibitors currently in clinical trials for 

rheumatoid arthritis (RA) and cancer. One Jak1/2 inhibitor, INCB028050, is in clinical 

trials for RA and in preclinical trials, using rats, 10mg/kg/d was found to decrease IFNγ 

signaling by 65 percent in the animal model of RA (Fridman et al. 2010).  
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IFNγ appears to be a strong target for stroke therapeutics. The reduction in IP-10 and T 

cell recruitment are two positive effects of inhibiting IFNγ signaling. The next goal would 

be to identify an agent that selectively targets IFNγ without causing an inflammatory 

response itself. Targeting only the pro-inflammatory IFNγ  response after stroke without 

shutting down the whole immune system is a potential therapeutic approach worthy of 

further investigation.   
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Figure 14:  Quantification of IP-10 levels in the brain post MCAO.  

Immunohistochemical quantification of striatal IP-10 protein levels in the brains of naïve, 

sham, 48, 72, and 96 h post MCAO demonstrate IP-10 levels are significantly elevated 

at 72 and 96 h post MCAO compared to naïve brains (*p<0.01) (A). Representative 

micrographs of IP-10 stained brains from naïve (B), 48 h (C), 72 h (D), and 96 h (E) post 

MCAO. Scale bar = 100µm.  
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Figure 15:  Quantification of IP-10 levels in the spleen post MCAO. 

Immunohistochemical quantification of IP-10 protein levels in the spleens of naïve, 

sham, 24, 48, 72, and 96 h post MCAO demonstrate IP-10 levels are significantly 

elevated at 24 h and remain elevated out to 96 h post MCAO compared to naïve spleens 

(*p<0.0007) (A). Representative micrographs of IP-10 stained spleens from naïve (B), 

sham (C), 24 h (D), 48 h (E), 72 h (F), and 96 h (G) post MCAO. Scale bar = 120µm.  
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Figure 16:  IP-10 producing monocytes in the infarct following MCAO. Confocal 

micrograph shows amoeboid CD11b positive cells (red) with intracellular IP-10 (green) in 

the striatum of the ipsilateral hemisphere 96 h following MCAO. Scale bar equals 75µm. 

Arrows indicate areas of co-localization.  
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Figure 17:  IFNγ neutralizing antibody administration following MCAO decreases 

infarct volume. Administration of an IFNγ at 24, 48, and 72 h post MCAO significantly 

decreased infarct volume at 96 h when compared to the vehicle group (*p<0.007). Infarct 

volumes are decreased compared to isotype controls. However this did not reach 

significance (# p=0.0588).  
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Figure 18:  Quantification of IP-10 levels in the brain post MCAO with 

administration of an IFNγ neutralizing antibody. Immunohistochemical quantification 

of striatal IP-10 protein levels in the brains of vehicle, IgG isotype, and IFNγ antibody 96 

h post MCAO demonstrate IP-10 levels are significantly decreased in the IFNγ antibody 

treated group compared to the vehicle treated group (*p<0.009) (D). Representative 

micrographs of IP-10 stained brains from vehicle (A), IgG isotype (B), and IFNγ antibody 

(C) treatment groups 96 h post MCAO.  Scale bars = 100µm.  
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Figure 19:  Quantification of IP-10 levels in the spleen post MCAO with 

administration of an IFNγ neutralizing antibody. Immunohistochemical quantification 

of IP-10 protein levels in the spleens of vehicle, IgG isotype, and IFNγ antibody 96 h post 

MCAO demonstrate IP-10 levels are elevated in the IFNγ antibody and the IgG groups 

compared to the vehicle treated group (D). Representative micrographs of IP-10 stained 

spleens from vehicle (A), IgG isotype (B), and IFNγ antibody (C) treatment groups 96 h 

post MCAO.  Scale bars = 120µm.  
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Figure 20:  CD3 immunoreactivity appears to be decreased in IFNγ antibody 

treated brains. The amount of T cells in the brain following MCAO appears to be 

decreased. Images are from the striatum of the ipsilateral hemisphere. There appears to 

be decreased CD3 (T cell) immunoreactivity in the brains of IFNγ antibody treated 

animals (C) compared to the amount of staining in the two control groups vehicle (A) and 

isotype (B). Scale bars equal 100µm. Arrows indicate areas of staining.  
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Conclusion 

Stroke is a complex neurologic disorder that occurs 795,000 times per year. It is the 

leading cause of disability and the fourth leading cause of death. The current therapeutic 

treatment for ischemic stroke is rTPA. Unfortunately only 3-5 percent of stroke patients 

receive this treatment. Investigations into understanding the underlying mechanisms of 

neural cell death have provided some insight into developing potential new therapies. A 

majority of the initial work focused on the very early events that lead to neural injury, 

including glutamate excitotoxicity (Ikonomidou and Turski 2002) and calcium 

dysregulation (Cheng et al. 2004). Then the early immune response was recognized as 

a contributing factor to neural injury and therapies were developed to target the immune 

system with antibodies against intracellular adhesion molecule (ICAM) (Enlimomab 

Acute Stroke Trial Investigators 2001). All of these therapies failed in clinical trials. There 

have been many different speculations as to why these different agents failed. The 

preliminary studies were done in rodent models of stroke but the rodent brain is different 

from the human brain with regards to ratio of white to gray matter and the development 

of the cortex. In other preliminary studies therapies were administered prior to 

experimental stroke or at a clinically irrelevant time point. Additionally, most of the 

preliminary studies were completed in healthy young male animals, which do not 

accurately represent the human population that is most commonly affected by stroke. 

Further research into the mechanisms of neural injury has lead to the discovery of the 

role the immune system plays in enhancing delayed neural injury. Studies have 

identified the immune cell types that are present in the brain at various time points 



www.manaraa.com

126 
 

following MCAO and have reported lymphocytes, T cells in particular, are increased in 

the infarct days following stroke. Unlike monocytes and other innate immune cells, which 

are present in the brain hours following stroke, T cells begin to significantly increase in 

number around 72 h following MCAO (Stevens et al. 2002).  

 

Other studies began to examine the adaptive immune response following MCAO and 

found that lymphocytes play a detrimental role following stroke. SCID mice, which lack 

the ability to produce lymphocytes, had decreased infarcts compared to WT mice at 96 h 

following tMCAO (Hurn et al. 2007). Rag-/- mice, which are not capable of producing 

lymphocytes, also had reduced infarcts compared to WT mice. When looking at specific 

lymphocyte subtypes T cells both, CD4-/- (Th cells) and CD8-/- (cytotoxic T cells) mice, 

had reduced infarcts compared to WT mice. However, B cell-/- mice did not have 

significantly different infarct volumes when compared to WT mice, suggesting B cells do 

not play a detrimental role following stroke (Yilmaz et al. 2006). These studies implicate 

the peripheral immune system in the exacerbation of neural cell death following stroke. 

 

The spleen is a reservoir of peripheral immune cells. Splenectomy prior to pMCAO 

decreases infarct volume by 80% out to four days following pMCAO (Ajmo et al. 2008); 

the infarct has stabilized by four days in our pMCAO model (Newcomb et al. 2006). In 

addition to decreasing infarct size splenectomy also decreases the number of 

neutrophils, (Ajmo et al. 2008) T cells, NK cells, and decreases microglia/macrophage 

activation (Seifert et al. 2012). Removing the spleen decreases infarct volume after 

tMCAO in mice (Jin et al. 2013) and reduces brain edema following ICH (Lee et al. 
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2008). The mechanism behind the splenic response is poorly understood but the spleen 

as a plausible therapeutic target for stroke. 

 

Removing splenocytes has a beneficial effect on stroke outcomes. The exact role that 

these cells play in exacerbating neural injury after stroke is unclear. These cells could be 

migrating to the brain following stroke and increasing injury by cell mediated effects. 

Splenocytes could also remain in the spleen and contribute to neural injury by releasing 

inflammatory mediators like cytokines. It is also possible that both of these scenarios are 

contributing to immune mediated cell death following stroke. While immune cells are 

present in the brain after stroke, these could originate from other organs besides the 

spleen. However, our data shows that splenocytes of monocytic and T cell origin migrate 

to the injured brain but appear to remain in the blood vessels and release inflammatory 

cytokines, such as IFNγ. 

 

Cytokines have also been extensively studied in experimental models of stroke and in 

stroke patients. These studies have lead to contradicting evidence regarding the role 

certain cytokines play following stroke. Some cytokines have demonstrated 

neuroprotective effects and other inflammatory cytokines are elevated too early to be a 

therapeutic target. IL-1β is elevated in the brain within hours following stroke. IL-10 is 

neuroprotective following experimental stroke and higher levels of plasma IL-10 are 

associated with better outcomes in patients. TNFα has contradictory effects following 

experimental stroke and its effects are dependent on its concentration. IL-6 has both 

inflammatory and protective effects depending on the timing of its expression following 

stroke. The majority of cytokines studied following experimental stroke are elevated early 
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in the brain and produced by cells of the innate immune system. These contradictory 

results at early time points after stroke have not lead to the development of any 

therapeutics targeting any of the above mentioned cytokines, despite the fact that there 

are FDA approved therapies which target TNFα and IL-6.   

 

The adaptive immune system initiates a response days after stroke and targeting it 

would extend the therapeutic window. IFNγ is a pro-inflammatory cytokine that is 

primarily produced by the adaptive immune system. One of the primary mechanisms by 

which IFNγ modulates the immune response is to activate cells of monocytic origin, 

including microglia and macrophages. In response to a pathogen T cells and NK cells 

produce IFNγ to activate and increase the cytotoxic properties of macrophages. The 

primary goal of the Th1 response is to increase the killing of intracellular pathogens. IFNγ 

is considered to be the signature cytokine associated with Th1 responses. This response 

is the body’s major defense against viral and bacterial pathogens. However, elevated 

levels of IFNγ following stroke as shown in our studies leads to increased cell death 

through over activation of microglia/macrophage in the injured brain.  

 

Previous work in our laboratory has shown microglia/macrophages become maximally 

activated at 72 h post pMCAO (Leonardo et al. 2010). These data coincide with the 

findings in aim 1 that IFNγ levels are elevated in the brain at 72 h after pMCAO. The 

spleen is the mediator of the inflammatory response following stroke as demonstrating 

that its removal reduces injury. Additional data from aim 1 indicate the spleen is a major 

source of IFNγ, as levels spike at 24 h in the spleen and splenectomy prior to pMCAO 
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reduces brain levels of IFNγ. Adding IFNγ systemically to splenectomized animals 

reverses the protective effects of splenectomy and increases infarct volume to levels not 

statistically different from sham splenectomized animals and brain IFNγ levels return to 

levels seen in intact animals.  Moreover, the effects of IFNγ are not directly toxic to 

neural cells. Co-incubation with IFNγ during normoxia and OGD did not result in 

significantly increased death to cultured neurons or oligodendrocytes. However, 

neuronal cultures that contain IFNγ activated microglia did have significantly more cell 

death (Bal-Price and Brown 2001). This suggests that IFNγ alone is not directly toxic to 

neurons or OLs but if microglia are present then IFNγ activates these cells in a pro-

inflammatory nature that is detrimental to neural cells.  

 

Splenectomy provides further evidence that the splenic response is involved in 

generating the inflammatory response in the brain following stroke. As splenectomy 

reduces the amount of peripheral immune cells in the brain compared to sham 

splenectomized animals.  Cells from both the innate and adaptive immune systems are 

significantly decreased in the brain with the absence of the spleen during stroke. NK and 

T cells are the major source of IFNγ in the brain so the absence of these cells will result 

in a reduced activation of microglia/macrophages. These data implicate the spleen in the 

IFNγ inflammatory response and the peripheral immune cell response that increase 

neural injury following MCAO. 

 

These current studies on the role of IFNγ in stroke are supported by previously published 

literature. IFNγ mRNA is increased in the brain beginning 48 h post MCAO and remained 
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elevated out to six days (Li et al. 2001). Direct injection of an IFNγ neutralizing antibody 

into the brain was only effective at reducing infarct if administered at 72 h following 

tMCAO in mice and was not effective if administered 15 min post tMCAO (Liesz et al. 

2009). Additionally, IFNγ-/- mice had reduced infarcts compared to WT mice following 

tMCAO (Yilmaz et al. 2006). Microglia/macrophages become maximally activated at 72 h 

following pMCAO (Leonardo et al. 2010) showing the presence of IFNγ is necessary for 

the activation of these cells. IFNγ mRNA is increased in the spleen at 22 h following 

tMCAO in mice (Hurn et al. 2007) supporting the finding that IFNγ levels spike  within the 

spleen at 24 h post pMCAO. Our findings with splenectomy and IFNγ have recently been 

replicated in a mouse model of tMCAO (Jin et al. 2013) showing an identical response in 

a different species and model of stroke. These experiments demonstrate there is a 

connection between the spleen, IFNγ, and post stroke immune mediated neural injury.  

 

The delay in increased IFNγ levels expressed in the injured brain suggests that the 

splenocytes are migrating to the brain following ischemic stroke. Previous studies have 

used knockout mice and irradiated WT mice injected with green fluorescent protein 

(GFP) mouse bone marrow to study the reaction of the immune system to stroke. These 

studies have shed important light on what types of cells are found in the brain following 

stroke and identifying cells that are detrimental to neural cell survival after a stroke. 

However, none of these studies have addressed the specific role splenocytes play in the 

post stroke inflammatory reaction in the brain. The second aim labeled splenocytes with 

CFSE prior to MCAO and tracked the migration of spleen cells following MCAO. This will 

allow the use of an intact animal and still be able to track cells in vivo following MCAO 

without using adoptive transfer of labeled cells.  
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The spleen transiently decreases in size after pMCAO in rats from 24-72 h post pMCAO. 

Increased circulating levels of CAs mediate this effect by activation of α1 adrenergic 

receptors that are expressed on the splenic smooth muscle capsule. Administration of 

prazosin, an α1 adrenergic blocker, prevents the decrease in spleen size observed at 48 

h post pMCAO (Ajmo et al. 2008). Stress from a stroke induces increased circulating 

levels of CAs in people and animals. Splenic contraction has been associated with 

physically stressful situations, like repeated breath holds that result in repeated apneas. 

The physical stress caused splenic contraction and the release of red and white blood 

cells into circulation. This increase in circulating red and white blood cells does not occur 

in splenectomized individuals (Bakovic et al. 2005). The changes in spleen size after 

pMCAO determined the time points that were chosen for the study presented in aim 2, 

when the spleen is decreased in size at 48 h and at 96 h post pMCAO when the spleen 

has returned to size. CFSE was found to be nontoxic out to nine days post injection and 

labels 20 percent of splenocytes at five days post injection. At 48 h there is a significant 

decrease in splenic CFSE labeled cells and a concurrent significant increase in CFSE 

positive cells in circulation following pMCAO which is not observed in sham MCAO or 96 

h post MCAO. This increase in circulating splenocytes corresponds to the decrease in 

spleen size, demonstrating that contraction of the spleen leads to the release of 

splenocytes into circulation following pMCAO. This is consistent with data on splenic 

contraction leading to increased circulating levels of red and white blood cells (Bakovic 

et al. 2005).  
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While there was an overall increase in circulating splenocytes there is an overall 

decrease in circulating monocytes indicating the majority of these cells in circulation are 

likely to be of splenic origin. This is consistent with findings that the spleen is a large 

reservoir of undifferentiated non-tissue specific monocytes (Swirski et al. 2009). The 

decrease in spleen size is consistent with the decrease in CFSE labeled splenocytes in 

the spleen, and the increase in circulating CFSE labeled cells at 48 h in the pMCAO 

group and not any of the other groups. The lymphocyte response also appears to be 

pMCAO specific as they were significantly elevated in circulation in the 48 and 96 h 

pMCAO groups and the 96 h sham MCAO. At 48 h following pMCAO the most likely 

lymphocyte in the circulation are NK cells, as these cells are involved in the innate 

immune response. T cells and B cells could be contributing to the increase seen at 48 h, 

but these cells generally take longer to become activated. Further evidence of this 

finding is that there are more lymphocytes in circulation at 96 h regardless of treatment. 

This suggests the adaptive response is more robust at 96 h than at 48 h.  With data 

demonstrating splenocytes enter into circulation following pMCAO the injured brain was 

examined for CFSE label splenocytes.  

 

CFSE positive cells are found in the brains of rats at 48 and 96 h after pMCAO only and 

not in the sham MCAO treated groups. Additionally, CFSE positive cells were only found 

in the ipsilateral hemisphere. It has been previously published that immune cells are 

present in the brain following MCAO (Stevens et al. 2002); however the tissue origin of 

these cells was unknown. These data demonstrate that some of the immune cells found 

in the brain after MCAO are directly from the spleen. Additionally double staining with 

immune cell surface markers identified monocytes and NK cells at 48 h and monocytes, 

NK cells, and T cells at 96 h post pMCAO. No CFSE positive T cells were found at 48 h 
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following pMCAO. These data are consistent with previous data on the timing of the 

migration of different immune cell populations into the brain following MCAO. Monocytes 

have been found in the brain as early as 18 h post MCAO and are seen in the brain out 

to 96 h following MCAO (Stevens et al. 2002). This is consistent with observing splenic 

monocytes in the brain at 48 and 96 h post pMCAO. Additionally, T cells are not 

observed in significant numbers in the brain until 72 h following MCAO (Stevens et al. 

2002). This would explain why splenic T cells are present at 96 h and not at 48 h post 

pMCAO.  

 

Using confocal microscopy it appears as though the CFSE positive cells in the brain are 

remaining in the vasculature and not extravasating into the infarct. Previous studies have 

demonstrated the detrimental role splenocytes, or the spleen, have on neural injuries, as 

splenectomy is neuroprotective prior to MCAO (Seifert et al. 2012; Jin et al. 2013; Ajmo 

et al. 2008). If the splenocytes in the brain appear to be remaining in the vasculature this 

makes it unlikely they are having directly cytotoxic effects on neural cells. Secretion of 

cytokines is another method of how these cells could be negatively influencing cellular 

survival within the infarct. Double staining indicated CFSE positive cells are producing 

IFNγ in the brain at 96 h but not at 48 h following pMCAO. Other studies have 

demonstrated that IFNγ protein levels are elevated at later time points in the brain 

(Seifert et al. 2012; Jin et al. 2013), and that peripheral immune cells are the source of 

IFNγ (Seifert et al. 2012). CFSE positive cells at 48 h could be producing any number or 

combination of different cytokines or chemokines. For example, monocytes secrete 

TNFα, IL-6, IL-12, IL-8, and the MCP family of chemokines (Boehm et al. 1997) all of 

which could be detrimental to neural tissue within the infarct. 
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IFNγ producing CFSE positive splenocytes were found in the ipsilateral hemisphere of 

the brain 96 h following pMCAO. These data provide a connection between the spleen, 

IFNγ, and the post stroke immune response. This connection suggests blocking IFNγ 

signaling could be neuroprotective following pMCAO. One way to block IFNγ signaling 

would be to neutralize circulating IFNγ with an antibody directed against it. In order to 

demonstrate the efficacy of any treatment neutralizing IFNγ activity, expression of IFNγ-

dependent IP-10 was analyzed. IP-10 is pro-inflammatory chemokine and a potent T cell 

chemoattractant. The ability of IP-10 to modulate the Th1 response and the fact that IFNγ 

induces a robust expression of IP-10 in activated cells makes this molecule an ideal 

indicator of IFNγ activation. Aim 3 was designed to identify a molecular footprint of IFNγ 

induced activation by investigating the expression profile of IP-10 following pMCAO and 

determine the effects of neutralizing IFNγ with an antibody after pMCAO on IP-10 

expression in the brain and spleen.  

 

IP-10 expression in the brain is significantly increased at 72 h and remains elevated at 

96 h post pMCAO. This expression profile mimics the expression of IFNγ in the brain 

after pMCAO (Seifert et al. 2012). Splenic IP-10 expression is increased at 24 h and 

remains elevated out to 96 h post pMCAO. However, unlike the brain, IP-10 expression 

in the spleen does not mirror the response of IFNγ in the spleen that spikes at 24 h post 

pMCAO and returns to sham operated levels (Seifert et al. 2012). The data from the 

brain and the spleen are consistent with findings in mice following tMCAO where IP-10 

mRNA is up regulated in the brain beginning at 6 h and remains elevated at 22 h. In the 

spleen IP-10 mRNA is increased at 22 h post tMCAO (Hurn et al. 2007; Offner et al. 
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2006). Microglia/macrophages are the main target cells of IFNγ and following pMCAO 

monocytes (CD11b+ cells) are the primary source of IP-10 in the brain. This is consistent 

with other reports that cells of monocytic origin produce IP-10 (Boehm et al. 1997).  

 

To inhibit IFNγ signaling, a neutralizing antibody directed against IFNγ was administered 

at 24, 48, and 72 h post pMCAO. The IFNγ neutralizing antibody significantly reduced 

infarct volume at 96 h following pMCAO compared to the vehicle control group. 

However, infarct volume was reduced but not significantly when the IFNγ antibody group 

was compared to the IgG isotype control group (p=0.058). In addition to reducing infarct 

volume, administration of an IFNγ neutralizing antibody significantly reduced the levels of 

IP-10 protein in the brain at 96 h following pMCAO. However, administration of a goat 

antibody, directed against IFNγ or the IgG isotype, resulted in increased levels of IP-10 

in the spleen compared to vehicle treated rats 96 h post pMCAO. The decreased levels 

of IP-10 in the brain demonstrate that IFNγ signaling is being inhibited by the neutralizing 

antibody.  The spleen reacted in a pro-inflammatory manner to the presence of a 

perceived threat of a foreign protein, the goat antibody. Both antibody treated groups 

had increased splenic IP-10 levels compared to the vehicle group. While IFNγ is a potent 

inducer of IP-10 it is not the only cytokine that can induce its production. TNFα, IFNα, 

and IFNβ can all induce IP-10 production, especially when they are expressed in 

combination (Groom and Luster 2011). Even activation of TLR4 can induce low levels of 

IP-10 production (Luster 2002).      
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In addition to reducing IP-10 levels in the brain, the IFNγ neutralizing antibody also 

appears to reduce the amount of T cells in the ipsilateral hemisphere 96 h following 

pMCAO. IP-10 is a potent chemoattractant for Th1 cells and has the unique ability to act 

as an antagonist on Th2 cells. IP-10 is a member of the CXC family of chemokines and 

binds the CXCR3 receptor on Th1 cells which attracts more Th1 cells to the injured area, 

in this case the brain. The recruitment of more Th1 cells increases the amount of IFNγ 

and other pro-inflammatory mediators in the brain. IP-10 has the ability to simultaneously 

inhibit the activation of Th2 cells by acting as an antagonist at the CCR3 receptor. 

Studies have shown IP-10 binding to CCR3 prevents any of the CCR3 ligands from 

binding the receptor and activating the cell (Loetscher et al. 2001). The ability of IP-10 to 

recruit more pro-inflammatory Th1 cells and block the Th2 response creates a highly 

inflammatory environment.  

 

Blocking IFNγ activity after stroke appears to be an ideal approach to reducing neural 

injury. The administration of a less immunogenic agent to interfere with IFNγ signaling 

could prove to be a promising therapeutic. There are other points in the IFNγ signaling 

pathway that could be targeted to blunt this response. IFNγ signals through Jak1/2, which 

activate STAT1. Both points in the pathway could be targeted. There are currently 

several Jak1/2 inhibitors in clinical trials for rheumatoid arthritis (RA) and cancer. One 

inhibitor, INCB028050, is in clinical trials for RA and in preclinical studies using a rat 

model of RA a dose of 10 mg/kg/d decreased IFNγ production by 65 percent (Fridman et 

al. 2010).  
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Selectively interfering with IFNγ and the Th1 response does not inhibit the other aspects 

of the immune system. Different facets of the immune system are involved with tissue 

repair and regeneration. Therefore, agents that suppress the immune system as a whole 

are detrimental because they block the beneficial immune responses as well as the 

responses that protect against infectious agents. 

 

The Spleen, IFNγ, and IP-10: The Pro-Inflammatory Loop in Response to Stroke  

Strokes involving occlusion of the MCA, which is the most commonly occluded vessel in 

ischemic stroke patients, damage a number of frontal brain areas including the insular 

cortex. The insular cortex is mainly perfused by the MCA. Insular cortical damage results 

in sympathetic dysregulation and increased levels of circulating CAs in patients and 

animals (Meyer et al. 2004; Cechetto et al. 1989). This increase in CAs has several 

implications following stroke. Studies in rats suggest activation of α adrenergic receptors 

on the splenic capsule causes splenic contraction and the release of splenocytes into 

systemic circulation. Additionally CAs affect most immune cells, in particular Th cells. 

Th1 cells express the β2 adrenergic receptor and when their activation increases the 

intracellular levels of cyclic adenosine monophosphate (cAMP) activating protein kinase 

A (PKA). This cascade inhibits Th1 cells from producing IL-2, IFNγ, and decreases 

proliferation. However, Th2 cells do not express β2 receptors and are unaffected by CAs. 

This would suggest that the immune system cannot generate a Th1 inflammatory 

response following strokes that involve the MCA and could be happening in stroke 

patients. However, naïve Th cells also express β2 receptors and when these receptors 

are activated by the presence of CAs then naïve Th cells differentiate in response to an 

antigen into Th1 cells. These cells have also been shown to produce two to four fold the 

amount of IFNγ than cells not activated in the presence of CAs (Swanson et al. 2001).  
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Moreover, the opening of the BBB by MMPs and other proteases along with the neural 

cell death causes neural antigens to leak into systemic circulation (Herrmann et al. 2000; 

Wunderlich et al. 1999). These antigens are seen as novel antigens to the immune 

system as the BBB under normal conditions shields the brain from the immune system. 

The spleen is a major site of blood filtration so it is possible then that after a stroke naïve 

Th cells in the spleen are becoming activated against neural antigens in circulation.  

With increased circulating levels of CAs, a pool of Th1 cells is created that are very 

reactive to neural antigens. These cells could then lead to a pro-inflammatory IFNγ 

driven immune response to the brain following stroke. This would result in two different 

immune reactions occurring in the body at the same time, a blunted Th1 response to 

pathogens and a strong Th1 response to the brain. Stroke patients that develop an 

infection within 15 days of stroke onset have an increased Th1 response to neural 

antigens and a poorer outcome at 90 days compared to patients that did not develop an 

infection. This poor outcome occurred regardless of initial stroke severity (Becker et al. 

2011). 

 

This new pool of Th1 cells which are primed to respond to neural antigens with highly 

elevated levels of IFNγ could explain the early spike in IFNγ in the spleen, which would 

lead to the delayed increase in the brain. IFNγ levels in the brain become elevated at the 

same time that microglia/macrophages are becoming maximally activated (Leonardo et 

al. 2010). These cells in response to IFNγ produce ROS and increase recruitment of 

more immune cells that results in more neural injury. Additionally microglia/macrophages 

increase the expression of IP-10, which attracts more Th1 cells and blunts the Th2 

response. Now a positive feedback loop has been set up where more Th1 cells produce 
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more IFNγ that activate more microglia/macrophages to produce more IP-10 to attract 

more Th1 cells.  

 

Removal of any piece of this loop: the spleen, T cells, or IFNγ, results in decreased 

neural injury. The spleen appears to be the initial launch point for this response to 

stroke. Splenectomy prior to MCAO reduces infarct volume, IFNγ levels in the brain, and 

immune cell infiltration into the brain. Knockout mice have shown that knocking out all 

lymphocytes, T cells, or IFNγ reduces infarct volume compared to WT mice. Selectively 

blocking IFNγ also reduces infarct, IP-10 levels, and T cell recruitment. All of these 

experiments selectively target an aspect of the inflammatory loop following stroke and 

successfully decreases neural injury. This suggests the pro-inflammatory loop 

established after a stroke is a potential therapeutic target. As previously mentioned 

selectively targeting IFNγ only interferes with one facet of the immune response. This 

leaves the other parts of the immune system that are critical to tissue repair, 

regeneration and responding to infectious agents intact. An ideal stroke treatment will 

extend the therapeutic window, decrease inflammation, and promote tissue repair. 

Inhibiting IFNγ meets two of the three criteria by extending the treatment window from 

4.5 h to 24 h and decreases inflammation. Blocking IFNγ signaling has the possibility to 

indirectly promote tissue repair if the immune response is shifted from an inflammatory 

tone to a more regenerative/repairing tone. Inhibiting IFNγ could also be combined with a 

treatment that selectively targets tissue repair.   
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Figure 21:  Proposed treatments targeting the splenic response following stroke 

to decrease neural injury. The splenic response to ischemic stroke can be detrimental. 

Blocking IFNγ signaling following ischemic stroke leads to decreased neural injury by 

decreasing interferon-inducible protein 10 (IP-10) and T cell recruitment to the injured 

brain. This suggests inhibiting IFNγ signaling could be a stroke therapeutic. 
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